Table S1: Plants, extracts and isolated compounds that have been studied for their inhibitory properties towards HNE.
Plant |
Medicinal use |
Inhibition towards HNE |
Ref. |
||
Camelia Sitensis (Green tea) |
Antoxidant, antifungal, antimutagenic, anticarcinogenic, antidiabetic agent, treatment against cardiovascular diseases, and many types of cancer (colon, lung, mouth, esophagus, stomach, kidney, small intestine, pancreas, mammary glands, excellent food intake agent |
ECGC ( IC50=250 μΜ) |
1 |
||
Boswellia spp. |
Anti-inflammatory properties |
Potent inhibition |
1 |
||
Tagetes erecta L. (Marigold ) (Compositae) |
Skin disorders(sores, wounds, burns, ulcers, eczema etc), kidney problems, muscular pain boils, carbuncles, earache |
Methanolic extract:IC50=4.13±0.93 mg/ml Butanoic extract:IC50=4.01±1.37 mg/ml Syringic acid (IC50=34.29± Amyrin (IC50=33.98±1.82 mg.mL |
2 |
||
Ilex paraquariensis St. Hil (Used in Yerba Mate tea) (Aquifoliaceae) |
Antioxidant, cellular protective, anti-obesity, thermogenic, circulatory system, hypocholesterolemic and bile stimulant regulator, use as tonic and stimulant beverage agent |
Ethanolic extract (IC50=0.5 μg/ml) Methanolic extract (IC50= 1.38 μg/ml) Dicaffeoylquinic acid derivatives: 3,5 dicaffeoylquinic acid methyl ester (IC50= 1.4 μΜ) 3,4-dicaffeoylquinic acid methyl ester (IC50=4.2 μΜ) 3,5-dicaffeoylquinic acid (IC50= 2.4 μΜ) 4,5-dicaffeoylquinic acid methyl ester (IC50=1.7 μΜ) 3,4-dicaffeoylquinic acid (IC50=7.3 μΜ) 1,5-dicaffeoylquinic acid (IC50=151 μΜ) Monocaffeoylquinic acid derivatives: Neochlorogenic acid methyl ester, cryptochlorogenic acid methyl ester, chlorogenic acid methyl ester: weak HNE inhibition Quercetin (IC50=1.5 μΜ) Rutin (IC50= 6.9 μΜ) Kaempferol 3-O-rutinoside: no inhibition |
3 |
||
Cucumis sativus L. (Cucumber) (Cucurbitaceae) |
Skin irritations ans disorders (swelling under the eyes, sunburn), healing agent against cooling, healing, soothing, emollient, lenitive and anti itching effects, hyperpigmentation |
Juice of C. sativus inhibits 50% of HNE activity at a concentarion of 6.14 μg/ml |
4 |
||
Cimicifuga Racemosa (Black Cohosh) (Ranunculaceae) |
Analgesic, sedative and anti-inflammatory agent |
Caffeic acid: (IC50=93 μΜ) Fukinolic acid (IC50=0.23 μΜ) cimicifugic acid A (IC50= 2.2 μΜ) cimicifugic acid B (IC50=11.4 μΜ) cimicifugic acid E (20% HNE inhibition at 50 μΜ) cimicifugic acid F (IC50= 18 μΜ) isoferulic acid (IC50> 50 μΜ) Ferulic acid (IC50>> 500 μΜ) Elastinal (IC50= 1150 μΜ) |
5 |
||
Olea europaea L. (Oleaceae) |
Diuretic, hypotensive, emollient agent, used for urinary and bladder infections and skin disorders |
( E) -2- octenal (potent HNE inhibition) (E ) -2-nonenal (potent HNE inhibition) |
6 |
||
Diospyros kaki folium (Persimmon leaf) |
Agent against skin disorders, anti-wrinkle agent |
Ethanolic fraction II (flavonoid content) (78.1% HNE inhibition at 500 μΜ) Ethanolic fraction III (polyphenolic content) (28.8% HNE inhibition at 500 μΜ) |
7 |
||
Ginseng |
Antioxidant properties |
Extracts inhibit 90% of HNE activity at 0.14 mg/ml |
8 |
||
Actinodaphne lancifolia |
Treatments against urinary disorders and diabetes, antioxidant, cytotoxic antidiarrheal, thrombolytic properties |
IC50= 103.10 μg/ml) |
9 |
||
Aesculus turbinata |
Anti-inflammatory, anti-edematous, capillaro-protective properties, cosmetics and food agent |
IC50= 43.10 μg/ml |
9 |
||
Cleyera japonica |
Antioxidant, free radical scavenging properties |
IC50=205.90 μg/ml |
9 |
||
Cornus controversa |
Free radical scavenger, anti-tyrosinase and anti-elastase properties |
IC50= 163 μg/ml |
9 |
||
Cornus walteri |
Skin anti-inflammatory agent, antioxidant, antidiarrheal, antihyperglycemic, anti-obesity properties |
IC50= 26.1 μg/ml |
9 |
||
Cryptomeria japonica |
Protection of human keratinocytes |
(IC50=108.2 μg/ml) |
9 |
||
Euscaphis japonica |
Antioxidant, antitumor agent |
IC50=455.90 μg/ml |
9 |
||
Machilus japonica (Kusanoi) |
Antimicrobial, anti-α-glucosidase, anti-inflammatory properties |
IC50=108.2 μg/ml |
9 |
||
Melia azedarach |
Antidiarrheal, ant-malaria, antidiabetic, antidiabetic properties, treatments against rheumatism, asthma, leprosy, eczema, piles, ulcers, toothaches, fevers, snake bites, treatment against skin disorders |
(IC50=293.20 μg/ml |
9 |
||
Oenothera erythrosepala |
Atioxidant, anti-inflammatory, antidiabetic, anti-bacterial, anti-neuropathic, anti-fungal, anti-diarrheic, cariostatic, antiviral, anti-ulcerogenic, antihelmintic properties, anti-cancer. Anti-tumor agent, treatment against kidney disordes, hepatic disorders, cardiac disorders nematicidal activity, immune response activity, hypocholesterolemic activity, vasorelaxation activity |
IC50=87.80 μg/ml |
9 |
||
Rhus javanica |
Antioxidant, anti-inflammatory, antibacterial, antiviral, anticancer, antidiarrhoeal, hepatoprotective properties, treatment against dysentery and coughs |
IC50=70.5 μg/ml |
9 |
||
Rosa multiflora |
Antioxidant, antibacterial properties, skin care cosmetics agent |
IC50= 371.90 μg/ml |
9 |
||
Sophora flavescens |
Analgesic, antipyretic, anthemintic and stomachic properties |
IC50=219.5 μg/ml |
9 |
||
Taxillus yadoriki |
Antioxidant, anti-inflammatory, anti-aging, skin-whitening agent, anti-elastase and anti-tyrosinase activity, skin care cosmetics agent |
IC50=36.4 μg/ml |
9 |
||
Viburnum odoratissimum |
Antioxidant, antiwrinkle properties, skin care cosmetics agent |
IC50=80.80 μg/ml |
9 |
||
Areca catechu |
Anti-inflammatory, anti-aging properties |
IC50=28.10 μg/ml |
9 |
||
Centella asiatica (L.) Urban (Gptu Kola) (Apiaceae) |
Various health disorders, anti-aging agent in cosmetics |
Methanolic extract (IC50=14.54±0.39 μg/ml) n-butanolic extract (IC50=29.15±0.31 μg/ml) Asiaticoside (IC50=19.45±0.25 μg/ml) |
1,10 |
||
Clitoria ternates L. (Butterfly pea ) (Fabaceae) |
Central nervous system (CNS) disorders (depression, anxiety, stress etc), skin disorders, antipyretic, anti-inflammatory, analgesic, local anesthetic and antidiabetic agent |
Methanolic extract (IC50= 9.61±0.36 μg/ml) |
11 |
||
Grape pomace |
Skin anti-aging agent |
Polyphenolic extracts (73% HNE inhibition at 35.3 μg/ml, 63% HNE inhibition at 23.5 μg/ml, 49% HNE inhibition at 14.1 μg/ml, 36% HNE inhibiton at 8.8 μg/mland 20% HNE inhibition at 7.1 μg/ml. Fraction abundant in gallic acid (IC50= 47%) Fraction abundant in catechins (IC50= 17%) Fraction abundant in procyanidins (IC50= 19%) Fraction abundant in flavonol-glucosides (IC50=2%) Catechin (IC50=12.0% at 1mmol/l) Epigallocatechin gallate (EGCG) (IC50=7.3% at 1 mmol/l) Procyanidin B2 (6.4% at 1mmol/l) |
12 |
||
Harpagophytum procumbens (Devil's claw) |
Skin disorders |
6΄-O-acetylacteoside (IC50= 70 μΜ) Isoacteoside (IC50= 286 μΜ) 8-PCHG (IC50= 331 μΜ) Pagoside (IC50= 260 μΜ) Harpagoside (IC50~>800 μΜ) Acteoside (IC50~>800 μΜ) Cinnamic acid (IC50~>800 μΜ)
|
13 |
||
Vitis vinifera (Grape vine) |
Anti-inflammatory and antioxidant agent, free radical scavenger, treatment against cardiovascular diseases |
Seeds extract (IC50= 5.4 μΜ) |
12 |
||
Polypodium species |
Treatment against peptic ulcer, kidney disorders, rheumatoid arthritis, psoriasis, skin disorders (dermatitis, vitiligo) |
Selligueain (IC50=40 μΜ in leukocytes) |
14 |
||
Lythrum salicaria L. (Lythraceae) |
Anti-inflammatory properties, treatment against haemorrhoidal disease, dysentert, chronic intestinal catarrh, eczema, periodontidis, varicose veins, gingivitis, skin care agent |
IC50=37.80±5.9% at 10 μg/ml |
15 |
||
Geum urbanum L. (Rosaceae)
|
Treatment against periodontitis stomach disorders, anti-bleeding, anti-inflammatory properties for gums and mucous membranes, |
IC50=30.4±4.8% at 10 μg/ml |
15 |
||
Rubus idaeus L. (Rosaceae) |
Anti-inflammatory, antimicrobial agent, treatments against common cold, fever and flu-like infections |
IC50=36.10±0.4% at 10 μg/ml |
15 |
||
Rubus fruticosus L. (Rosaceae) |
Antibacterial, antinociceptive, antiproliferative, analgesic properties |
IC50=30.70±5.6% at 10 μg/ml |
15 |
||
Potentilla erecta L Raeusch.(Rosaceae) |
Antidiarrheal, anti-ulcerogenic, hemostatic, antihemorrhoidal, wound- healing, skin photoprotecting, free radican scavenging agents |
IC50=37.40±3.9% at 10 μg/ml |
15 |
||
Filipendula ulmaria L. (Rosaceae) |
Dugestive agent, treatment against hetburn, hyperactivity, diarrhoea, gastritis, peptic ulceration, rheumatism, elimination of excess acidity and nauesa |
IC50=57.4±5.3% at 10 μg/ml |
15 |
||
Maxim Potentilla anserina L. (Rosaceae) |
Anti-inflammatory, wound healing, antitumor, antibacterial, antifungal, antivirues, antidiarrhetic and antidiabetic properties |
IC50=7.50±1.0% at 10 μg/ml |
15 |
||
Agrimonia eupatoria L. (Rosaceae) |
Antiadhesive, antibacterial, antioxidant, astringent, anti-inflammatory, hepatoprotective properties, treatment against bed wetting, hemorrhagic colitis, liver and urinary disease, cancer, acute diarrhea, diabetes mellitus, inflammation of oral and pharyngeal mucosa, hepatitis B virus |
IC50=55.2±4.1% at 10 μg/ml |
15 |
||
Geranium pretense L. (Geraniaceae) |
Antidiarrheic, diuretic, tonic, hemostatic, stomachic and antidiabetic agent |
IC50=16.10±3.6% at 10 μg/ml |
15 |
||
Geranium robertianum L (Geraniaceae) |
Antioxidant, antimicrobial, antidiabetic, antiulcer, neuroprotective, cytotoxic against tumor cells properties, pro-inflammatory agent, food additive |
IC50=34.70±4.5% at 10 μg/ml |
15 |
||
Aesculus hippocastanum L. (Hippocastanaceae) |
Anti-inflammatory, anti-elastase, venotonic, lymphagogue, anti-oedematous properties |
IC50=62.0±6.9% at 10 μg/ml |
15 |
||
Campylotropis hirtella L. (Leguminosae) |
Dysmenorrhea, metrorrhagia, metrostaxis, gastric ucers, prostate hyperplasia. Food agent |
Ethyl acetate extract (80% HNE inhibition at 100 μg/ml) (2R, 3R)-6-methyl-30-geranyl-2,3-trans-5,7,40-trihydroxy-flavonol (IC50=17.9±1.5 μΜ, noncompetitive inhibition) (E)-3-(3-(3,7-dimethylocta-2,6-dienyl)-2,4-dihydroxyphenyl)-3,5,7-trihydroxy-chroman-4-one (IC50=8.4±0.8 μΜ, competitive inhibition) 3΄-geranyl-5, 7, 2΄, 4΄-tetrahydroxyisoflavanone (IC50=30.8±1.3 μΜ, mixed inhibition). |
16,16-20 |
||
Phillanthus Emblica L. (Amla) |
Antioxidant, anti-tyrosinase, anti-wrinkle, antibacterial, anti-inflammatory properties, cosmetic agent |
IC50=387.85±8.78 μg/ml |
21 |
||
Manilkara zapota L. (Sapota) |
Antixidant, anti-collagenase and anti-elastase properties |
Methanolic extract (IC50=35.73±0.61 μg/ml) |
21,22 |
||
Silibum Marianum |
Antioxidant, anti-inflammatory, skin photoprotective properties, treatments against skin aking and melanoma development |
IC50=38.57±0.04 μg/ml μg/ml |
21,22 |
||
Dodonea viscosa L. (Jack) (Sapindaceae) |
Skin, disorders, diabetes, antibacterial, antifungal and anti-inflammattory agent |
Aerial parts methanolic extract (75% HNE inhibition at 100 μg/ml) Visconata (IC50=2.4±0.2 μΜ, noncompetitive inhibition), penduletin (IC50=65.4±0.1 μΜ, mixed inhibition), 5,6-dihydroxy-3,4΄,7-trimethoxyflavone (IC50=25.4±0.4 μΜ, mixed inhibition), viscosine (IC50=150.2±1.2 μΜ, non responding inhibition), isokaemferide (IC50=93.9±0.6 μΜ, mixed inhibition), viscosol (IC50=10.9±0.3 μΜ, mixed inhibition), 5,7-dihydroxy-3΄-(2-hydroxy-3-methylbutenyl)-3,6,4΄-trimethoxy-flavone (IC50=114.7±0.2 μΜ, not reported inhibition, 5,7-dihydroxy-3΄-(3-hydroxy-methylbutyl)-3,6,40-trimethoxyflavone (IC50=33.4±0.5 μΜ, mixed inhibition), and 5,7,4΄-trihydroxy-3΄-(3-hydroxymethylbutyl)-3,6-dimethoxyflavone (IC50=74.7 ±0.3 μΜ, mixed inhibition)
|
23,24 |
||
Grindelia robusta Nutt. (Asteraceae) |
Anti-inflammatory, antimicrobial and expectorant agent, catarrhs of the respiratory tract |
Quercetin-3-methylether (IC50=19 μΜ) Quercetin-3, 3΄-dimethylether (IC50=129 μΜ) Quercetagetin-3,6-dimethylether (IC50=115 μΜ) |
25,26 |
||
Chelidonium majus L. (Papaveraceae) |
Gastric ukcer, oral infection, liver disease, anti-cancer, anti-inflammatory and antiviral agent |
Aeg/ml)rial part methanolic extract (88% HNE inhibition at 100 Alkaloids: Isoquinoline spallidamine (IC50 = 11.6 μΜ) dihydrosanguinarine (IC50 =>200 μΜ), (s)-stylopine (IC50=51.0±0.4 μΜ, reversible mixed type I), amottianamide (IC50=>200), (+)-chelidonine (IC50>200 μΜ), spallidamine (IC50= 11.6±1.1 μΜ, reversible mixed type I) N-trans-feruloyltyramine (IC50=20.7±0.9 μΜ, reversible mixed type I) |
27,27 |
||
Epimedium koreanum Nakai (Berberidaceae) |
|
Ethyl acetate extract (IC50= 35 μg/ml) Prenylated flavonoids: epimedokoreanin B (IC50=6.06 μΜ, reversible mixed type I) 5, 7, 4′-trihydroxy-8, 3′-prenylflavone (IC50 = of 6.28 μΜ, reversible mixed type I) |
28-30 |
||
Thuja orientalis L. (Cupressaceae) |
Rheumatism, diarrhea, chronic trachetis |
Methanolic extract (IC50=5.68 mg/ml) Flavonoids: Cupressuflavone (IC50 = 8.09±0.92 μΜ), amentoflavone (IC50=1.27±0.16 μΜ), robustflavone (IC50= 1.33±0.21 μΜ respectively) |
31 |
||
Herniaria glabra L. (Caryophyllaceae) |
Diuretic disorders, cystitis, irritable bladder, urinary tract infections, urolithiasis |
Plant Extract (7.35±1.59% HNE inhibition) Saponin fraction (2.39±1.03% HNE inhibition) Herniariasaponin 14 (HS4) (1.84±0.53% HNE inhibition) |
8 |
||
Rhizophora mucrinata Lam. (Mangrove plant) (Rhizophoraceae) |
Antidiabetic, antioxidant, anti-inflammatoryantimicrobial and anti-viralagent, anguna, dysentery, haematuria, ulcers, haemorrhage, diarrhea, nausea, fever, hypertension, constipation, menstruation disorders, leprosy, food agent |
Methanolic leaf extract (4.58±0.04 mg CAE/g (catechin equivalent) , methanolic root extract (4.50±0.16 mg CAE/g (catechin equivalent), methanolic twig extract (4.68±0.08 mg CAE/g (catechin equivalent), ethyl acetate fruit extract (4.25±0.25 mg CAE/g (catechin equivalent) |
32 |
||
Campylotropis hirtella (Leguminosae) |
Amenorrhea, mestrorhagia, metrostaxis, gastric ulcers, benign prostate hyperplasia, food agent |
Ethyl acetate extract (80% HNE inhibition at 100 μg/ml) Isolated flavonoids: (2R, 3R)-6-methyl-3΄-geranyl-2,3-trans-5,7,4΄-trihydroxy-flavonol (IC50 =17.9±1.5 μΜ, (E )-3-(3-(3,7-dimethylocta-2,6-dienyl)-2,4-dihydroxyphenyl)-3,5,7-trihydroxy-chroman-4-one (IC50= 8.4±0.8 μΜ) 3΄-geranyl-5,7,2΄,4΄-tetrahydroxyisoflavanone (IC50=30.8±1.3 μΜ) 3(S)-2΄,4΄-dihydroxy-5,5΄dimethoxy-(6΄΄,6΄΄-dimethylpyanoi)-(2΄΄,3΄΄:7,6)-isoflavanon (IC50> 200 μΜ) 3΄-geranyl-5,7,2΄,5΄-tetrahydroxyisoflavone (IC50 > 200 μΜ) |
16 |
||
Eriobotrya japonica (Loquat leaves) |
Antioxidant, anti-onflammatory agent, treatment of chronic bronchitis and coughs |
Terpenoid extract (IC50=3.26±0.56 μg/ml) Isolated Triterpenoids: Ursolic acid (IC50=8.49±0.42 μg/ml) |
33,34 |
||
Flemingia Philippinensis (Legumes) |
Rheumatism, improvement of bones density, food agent |
Methanolic extract (IC50= 87 μg/ml) Isolated prenylated isoflavones: genistein IC50=51.4±0.5 μΜ, noncompetitive inhibition), auriculasin (IC50=3.1±0.2 μΜ, competitive inhibition), 6,8-diprenylorobol (IC50=1.3±0.3 μΜ, competitive inhibition), 5,7,3΄,4΄-tetrahydroxy-2΄,5΄-di(3-methylbut-2-enyl) isoflavone (IC50=213.1±1.9 μΜ, competitive inhibition), flemiphilippinin A (IC50=8.3±0.4 μΜ, competitive inhibition), 5,7,3΄-trihydroxy-2΄-(3-methylbut-2-enyl)-4΄,5΄-(3,3-dimethylpyrano)isoflavone (IC50=22.4±0.7 μΜ, noncompetitive inhibition), 8-γ,γ-dimethylallylwighteone (IC50=6.0±0.3 μM, competitive inhibition), osajin (IC50=26.0±0.6 μΜ, competitive inhibition), flemingsin (IC50=12.0±0.4 μΜ, competitive inhibition), Isolated flavanones: flemichin D (IC50=5.3±0.5 μΜ, mixed type I inhibition), lupinifolin (IC50=13.3±0.1 μM, mixed type I inhibition), khonklonginol H (IC50=110.2±0.8 μΜ, mixed type I inhibition), Isolated chalcones: fleminchalcone C (IC50=62.1±0.5 μΜ, mixed type I inhibition), fleminchalcone A (IC50=76.6±0.9 μΜ, mixed type I inhibition), fleminchalcone B (IC50=53.2±0.2 μΜ, mixed type I inhibition) and a flavanol: 6,8-diprenyl-kaempferol (IC50=29.3±0.3 μΜ, mixed type I inhibition). |
35-37 |
Table S2: Studied natural secondary metabolites for their inhibitory activity towards HNE.
Inhibitor |
Chemical Family |
Plant Source |
IC50 |
Ref. |
||||
Luteolin |
Flavonoids |
|
12 μΜ |
14 |
||||
Chrysin |
Flavonoids |
|
6.7 μΜ |
14 |
||||
Naringenin |
Flavonoids |
|
Weak inhibition |
14,38 |
||||
Eriocitrin |
Flavonoids |
|
Weak inhibition |
14 |
||||
Gallic Acid Derivatives |
Phenolic acids |
|
High inhibition |
39 |
||||
Bornylcinnamic acid ester derivatives |
Cinammic acid derivatives |
|
1.6-6.9 μΜ |
14,40 |
||||
Cinammic esters |
|
|
Potent Inhibitor |
|
||||
Caffeic acid |
Cinammic acid derivatives |
|
93 μΜ |
5,13,38 |
||||
Dicaffeoylquinic acid derivatives |
Caffeic acid derivatives |
Asteraceae Phangnalom rupestre |
4.8-10 μΜ |
3,41-43 |
||||
3,5-di-O-caffeoylquinic acid |
|
|
50% at concentration of 0.2 μΜ |
44 |
||||
Bornyl caffeate |
Bicyclic caffeic acid derivative |
|
1.6 μΜ |
40 |
||||
N-octylcaffeic acid |
|
|
1 μΜ |
14 |
||||
Resveratrol (3,5,4΄-trihydroxy-trans-stilbene) |
Stilbenes |
|
31 μΜ and 12 μΜ |
12,45 |
||||
(-)-epigallocatechin-3-gallate |
Catechins |
Green tea |
0.4μΜ and 25.3 μΜ |
46 |
||||
{3-[1-(tert-butyldimethylsiloxy)-ethyl]-4-oxo-1-[3, 4, 5-tris (benzyloxy) benzoyl]-azetidin-2-ylidene}-acetic acid ethyl ester |
Monocyclic β-lactam derivatives |
|
Weak inhibition |
14 |
||||
Genistein |
Isoflavone |
|
HNE release (99 μΜ when stimulated by Fmlp and 0.5 μΜ when stimulated by PAF |
45 |
||||
Diosmetin |
O-methylated flavone |
|
83 μΜ |
14 |
||||
Quercetin |
Flavonoid |
|
2.4 μΜ |
14 |
||||
Quercetin glycosides |
Flavonoid glycosides |
|
0.3-11.1 μΜ |
14 |
||||
Phloretin |
Chalcone |
|
>36.5 μΜ |
14,47 |
||||
Viscolin |
Chalcone |
|
9.48 μΜ |
14,28 |
||||
Agrimoniin |
Elagittanins |
|
0.9 μΜ |
45 |
||||
Pedunculagin |
Elagittanins |
|
2.8 μΜ |
45 |
||||
Ellagic acid |
Phenolic dilactone |
Tea, Red grapes, strawberries, blackberries |
Potent inhibition (1.44 μg/ml) 88.6% inhibition at a concentration of 4.57 μg/ml |
39,48 |
||||
p-cymene |
Monoterpene |
Nigella Sativa seeds |
25 μΜ |
49 |
||||
Thymoquinone |
Monoterpene |
Nigella Sativa Seeds |
30 μΜ |
49 |
||||
Carvone |
Monoterpene |
Nigella Sativa Seeds |
14 μΜ |
49 |
||||
Thymol |
Monoterpene |
Nigella Sativa Seeds |
104 μΜ |
49 |
||||
|
|
|
18.88±5.21% at 10 μg/ml and 33.25±3.73% at 20 μg/ml |
49 |
||||
Carvacrol |
Monoterpene |
Nigella Sativa Seeds |
12 μΜ |
49 |
||||
Ursolic acid |
Pentacyclic triterpenes |
|
88.47±2.96% at 1000 μΜ 4.4 μΜ |
10,33,50,51 |
||||
Oleanolic acid |
Pentacyclic triterpenes |
|
88.14±3.72% at 1000 μΜ 6.4 μΜ |
2,10,11,50 |
||||
Glycyrrhetinic acid |
Pentacyclic triterpenes |
|
75.20±2.89% at 1000 μΜ |
51 |
||||
Glycyrrhizin |
Pentacyclic triterpenes |
|
78.66±1.99% at 1000 μΜ |
51 |
||||
Betulinic acid |
Pentacyclic triterpenes |
|
82.41±1.37% at 1000 μΜ |
51 |
||||
Lupeol |
Pentacyclic triterpenes |
|
93.56±1.19% at 1000 μΜ 1.9 μΜ |
51 |
||||
Canopkyllol |
Pentacyclic triterpenes |
|
2.5 μΜ |
51 |
||||
Germacranolides |
Sesquiterpene lactones |
|
7->200 μΜ |
52 |
||||
4β,15-Epoxy-miller-9Z-enolide |
Sesquiterpene lactones |
|
7->200 μΜ |
52 |
||||
15-(3΄-Hydroxy)-methacryloyloxy-micrantholide |
Sesquiterpene lactones |
|
7->200 μΜ |
52 |
||||
15-(2΄,3΄-Epoxy)-isobutyryloxy-micrantholide |
Sesquiterpene lactones |
|
7->200 μΜ |
52 |
||||
15-(2΄-Hydroxy)-isobutyryloxy-micrantholide |
Sesquiterpene lactones |
|
7->200 μΜ |
52 |
||||
eupatoripikrin |
Sesquiterpene lactones |
|
7->200 μΜ |
52 |
||||
molepantin |
Sesquiterpene lactones |
|
7->200 μΜ |
52 |
||||
4β, 15-Epoxy-miller-9E-enolide |
Sesquiterpene lactones |
|
|
52 |
||||
parthenolide |
Sesquiterpene lactones |
|
25% at 20μΜ |
45,52 |
||||
scandenolide |
Sesquiterpene lactones |
|
|
52 |
||||
3-acetoxy-costunolide |
Sesquiterpene lactones |
|
7->200 μΜ |
52 |
||||
7-hydroxy-costunolide |
Sesquiterpene lactones |
|
7->200 μΜ |
52 |
||||
Guaianolides |
Sesquiterpene lactones |
|
7->200 μΜ |
52 |
||||
2-oxo-Guai-1(5)-en-12,8α-olide |
Sesquiterpene lactones |
|
7->200 μΜ |
52 |
||||
thieleanin |
Sesquiterpene lactones |
|
7->200 μΜ |
52 |
||||
eminensin |
Sesquiterpene lactones |
|
7->200 μΜ |
52 |
||||
Podachaenin |
Sesquiterpene lactones |
|
7 μΜ |
52 |
||||
Pseudoguaianolides |
Sesquiterpene lactones |
|
7->200 μΜ |
52 |
||||
11α,13-Dihydrohelenalin-methacrylate |
Sesquiterpene lactones |
|
7->200 μΜ |
52 |
||||
11α,13-Dihydrohelenalin-acetate |
Sesquiterpene lactones |
|
7->200 μΜ |
52 |
||||
Eudesmanolide |
Sesquiterpene lactones |
|
7->200 μΜ |
52 |
||||
1β-Acetoxy-4α-hydroxy-15-isobutyryloxy-eudesma-11(13)-en-12,8β-olide |
Sesquiterpene lactones |
|
7->200 μΜ |
52 |
||||
11α, 13- Dihydrohelenalin acetate |
Sesquiterpene lactones |
|
-2-2% |
52 |
||||
Eudesmanolides |
Sesquiterpene lactones |
|
-2-2% |
52 |
||||
alantolactone/isoalantolactone 3:1 |
Sesquiterpene lactones |
|
-2-2% |
52 |
||||
Bolinaquinone |
Sesquiterpene |
Dysidea spec. |
5.3 μΜ |
52 |
||||
Aminoquinone dysidine |
Sesquiterpenes |
Dysidea spec. |
1.3 μΜ |
52 |
||||
Dysidone A:Dysidone B (1:1) |
Sesquiterpenes |
Dysidea spec. |
10 μΜ |
52 |
||||
Dehydrocostic acid |
Sesquiterpenic acid |
Inula Viscosa |
Potent inhibition |
52 |
||||
Erucic acid (22:1, cis-13) |
Fatty acids |
|
0.45 μΜ |
38 |
||||
Oleic acid (18:1, cis-9) |
Fatty acids |
|
5 μΜ |
38 |
||||
Stearic acid (18:00) |
Fatty acids |
|
10 μΜ |
38 |
||||
Palmitic acid (16:00) |
Fatty acids |
|
15 μΜ |
38 |
||||
Eicosapentaenoic acid (20:5) |
Fatty acids |
|
No inhibition |
38 |
||||
Docosahexaenoic acid (22:6) |
Fatty acids |
|
No inhibition |
38 |
||||
Myristic acid (14:00) |
Fatty acids |
|
35 μΜ |
38 |
||||
Pentadecanoic acid (15:00) |
Fatty acids |
|
25 μΜ |
38 |
||||
Heptadecanoic acid (17:00) |
Fatty acids |
|
>50 μΜ |
38 |
||||
Nonadecanoic acid (19:00) |
Fatty acids |
|
>50 μΜ |
38 |
||||
Arachidic acid (16:01, cis-9) |
Fatty acids |
|
20 μΜ |
38 |
||||
Behenic acid (22:00) |
Fatty acids |
|
30 μΜ |
38 |
||||
Palmitoleic acid (16:1, cis-9) |
Fatty acids |
|
20 μΜ |
38 |
||||
Linoleic acid (18:2, cis-9,12) |
Fatty acids |
|
10 μΜ |
38 |
||||
Linolenic acid (18:3, cis-9,12,15) |
Fatty acids |
|
15 μΜ |
38 |
||||
γ-linolenic acid (18:03. cis-6,9,12) |
Fatty acids |
|
15 μΜ |
38 |
||||
Myrtucommulone |
Acylphloroglucinols |
Myrtus Communis leaves extracts |
(0.4-3.8 μM) |
14 |
||||
Semimyrtucommulone |
Acylphloroglucinols |
Myrtus Communis leaves extracts |
(0.4-3.8 μM) |
14 |
||||
Hyperforin |
Acylphloroglucinols |
Hypericum Perforatum extracts |
(0.4-3.8 μM) |
14 |
Table S3: Plants, extracts and isolated compounds that have been studied for their inhibitory properties towards Hyaluronidase.
Plant |
Medicinal use |
Inhibition towards Hyal |
Ref. |
Chamaerhodos erecta |
Treatments againsts hepatic disorders, rheumatism, scurvy, high temperature, meal poisong, scorbutus, arthritis, tachycardia, face and foot swelling and hemorrhage |
Aerial part butanolic extract potent Hyal inhibition (2R,3S)-3,4-dihydro-2-(3,4-dihydroxyphenyl)-2H-chromene-3,5,7-triol (IC50= 0.842 mM), 1,2,3,4,6-penta-O-galloyl-b-D-glucopyranoside (IC50=0.595 mM), eugeniin (IC50=0.509 mM), 1,2,6-tri-O-galloyl-b-D-glucopyranoside (IC50=0.792 mM), potentillin (IC50=0.890 mM), agrimoniin (IC50=0.578 mM) rosmarinic acid (IC50=1.363 mM) |
53 |
Chamaerhodos Altaica |
Antiinflammatory properties, skin care cosmetics agetn |
Aerial part aqueous extract potent Hyal inhibition |
53 |
Dracocephalum foetidum |
Antimicrobial properties, ant-hyalurondase agent |
Isolated compounds: (R)-a-[[(2E)-3-[4-[[(1Z)-1-carboxy- 2-(3-hydroxy-4-methoxyphenyl)ethenyl]oxy] -3-hydroxyphenyl]-1-oxo-2-propen-1-yl]oxy]-3,4-dihydroxy-benzenepropanoic acid (IC50=0.22± 0.01 mM), rosmarinic acid (IC50=0.75±0.04 mM), acacetin-7-O-(3,6-O-dimalonyl)-b-D-glucopyranoside (IC50= 0.25±0.01 mM), acacetin-7-O-(3-O-malonyl)-b-D-glucuronopyranoside (IC50=0.19±0.02 mM), acacetin-7-O-b-D-glucuronide (IC50=0.55±0.14 mM), apigenin 7-O-(6-malonyl-beta-D-glucoside) (IC50=0.99±0.12 mM), apigenin 7-O-b-glucuronide (IC50= 0.56± 0.07 mM) and luteolin-7-O-b-D-glucuronide (IC50= 0.79±0.04 mM). |
54 |
Gaultheria procumbens L. (Eastern teaberry) |
Anti-inflammatory, analgesic properties, treatment against acute and chronic prostatitis, rheumatoid arthritis, chronic tracheitis, swelling pain |
Ethyl acetate extract (IC50= 21.83±0.82% at 100 μg/ml) |
55-57 |
Oenothera biennis L. |
Anti-diabetic, anti-inflammatory, antibacterial and antifulgal properties, Treatment against hyperlipidemia, atherosclerosis, atopic dermatitis, endothelial dysfunction, peptic ulcer, ulcerative colitis, Crohn's disease |
Aerial part methanolic extract (potent Hyal inhibition) |
58 |
Payena Dasyphylla Bark |
Anti-inflammatory and antioxidant properties |
Methanolic extract (IC50= 91.63% at 100 μg/ml) |
58,59 |
|
|
Ethyl acetate extract (Hyal-1 and Hyal-2 inhibition at 100 μg/ml) |
|
Borago officinalis L.(Borage) (Boraginaceae) |
Antioxidant, antispasmodic, antihypertensive, antipyretic, aphrodisiac, demulcent, diuretic properties, treatment against asthma, bronchitis, cramps, diarrhea, palpitations, kidney ailments |
Leaves extracts (IC50=71.6±5.4%) |
60 |
Spinacia oleracea L. (Spinach) (Chenopodiaceae) |
Antioxidant, free radical scavenging, anti-cancer, anti-obesity, hypoglycemic and hypolipidemic properties, high nutraceutical value |
Leaves extarcts (IC50= 92.3±1.8%) |
60 |
Lactuca sativa (Compositae) |
Antioxidant, anticancer agent, neutraceutical agent |
Leaves (IC50=110.5±0.3%) |
60 |
Arctium lappa L. (Lettuce) (Compositae) |
Anti-diabetic, anti-obesity, anti-tumor properties |
Roots (no Hyal inhibition) |
60 |
Chrysanthemum coronarium L. (Compositae) |
Anti-inflammatory, diuretic, nutritive, bllod purification, fluid retention properties, cosmetic agent |
Leaves (no inhibition) |
60 |
Lepidium sativum L. (Cress) (Gruciferae) |
Analgesic, anti-spasmodic, hepatoprotective, anti-diarrhoeal, antioxidant, anti-inflammatory, diuretic and galactagogue properties |
Leaves (IC50=89.4±3.0%) |
60 |
Eutrema wasabi Maxim. (Japanese horseradish stem ) (Gruciferae) |
Anti-inflammatory, anti-microbial, anti=platelet, anticancer, antioxidant and antidiabetic agent, high nutraceutical value |
Stem (IC50=91.4±1.1%) |
60 |
Rapharus sativus L. (Japanese radish) (Gruciferae) |
Antioxidant, antimicrobial properties. Treatment against respiratory urinary, gastrointestinal systems disorders, female and male infertilit, anemia, skin disorders |
Root (IC50=107.2±2.1%).) |
60 |
Brassica oleracea L. (Gabbage) (Gruciferae) |
Antioxidants and anticancer properties |
Leaves (no Hyal inhibition) |
60 |
Brassica campestris L. (Chinese cabbage) |
Leucorrhoea, menstrual disorders, gleets, body weakness, internal pain |
Leaves (no Hyal inhibion) |
60 |
Melissa officinalis L. (Lemno balm) (Labiatae) |
Hypoglycemix, hepatoprotective, antimicrobial, antidepressant, hypnotic and sedative agent, Treatment against breast cancer and colon carcinoma Food agent, uses in aromatotherapy |
Leaves (IC50= 1.0±0.3%), |
60 |
Mentha piperita L. Peppermint) (Labiatae)
|
Biliary disorders, dyspepsia, enteritis, flatulence, gastritis, intestinal colic, spams of the bile duct, gallbladder and gastrointestinal tract |
Leaves (IC50=26.5±14.4%) |
60 |
Perilla ocymoides L. (Perilla) (Labiatae)
|
Treatment against cold, headache, cough, abdominal fullness and distention, poisoning from fish and crabs, flavor agent |
Leaves (IC50=80.5±4.4%), |
60 |
Rosmarinus officinalis L. (Rosemary) (Labiatae) |
Antibacterial, antioxidant, antifungal and antitumor agent, Food agent, cosmetic agent |
Leaves (IC50=35.6±13.2%) |
60 |
Salvia officinalis L. (Sage) (Labiatae)
|
Antioxidant, anti-inflammatory, hypoglycemic, antibacterial, antitumor agnet, Treatment against Alzheimer's disease, Flavor agent, cosmetic agent |
Leaves (IC50=15.5±10.6%) |
60 |
Satureja hortensis L. (summer savoy) (Labiatae) |
Antioxidant, antimicrobial, antiparasitic, pesticidal, anti-inflammatory, antinociceptive, hepatoprotective, anticancer agent. |
Leaves (IC50=30.8±8.1%), |
60 |
Ocimum basilicum L. (Sweet basil) (Labiatae)
|
Antioxidant, anti-spasmodic, anti-diabetic, anti-bacterial, anti-fungal agent. Control of blodd pressure, treatments against coughs, headaches, infections, stomach aches and constipation. |
Leaves (IC50=60.2±7.1%) |
60 |
Majorana hortensis Moench (Sweet marjoram) (Labiaatae) |
Antioxidant, antiproliferative, antimutagenic, antimicrobial agent. Control of platelet aggregation. Treatments against cough, rheumatism, indigestion, toothache. Treatment against gastric and cardiovascular disorders, |
Leaves (IC50=23.5±7.2%) |
60 |
Thymus vulgaris L. (Thyme) (Labiatae) |
Antioxidant, antimibrobial, anti-inflammatory, antifungal agent. Treatment against acne and other skin disorders, anxiety, laryngitis, coughs, liver disfunction, menstrual cramps, premenstrual syndrome, infections of urinary tract |
Leaves (IC50=35.5±12.8%).= |
60 |
Vicia faba L. (Leguminosae) |
Antioxidant, anti-fungal, anti-diabetic, anticancer agent. |
Seeds (IC50=90.0±2.1%) |
60 |
Pisum sativum L. (Garden pea) (Leguminosae) |
Antioxidant, antidiabetic, antifungal, anti0inflammatory, antilipidemic and anticancer properties. Cosmetic agent |
Pods (no inhibition) |
60 |
Vigna radiata R. Wilez. (Mung bean) Lequminosae) |
Antioxidant, anti-inflammatory, antibacterial, antitumor, hypolipidemic, antidiabetic, detoxication, and hepatoprotective agent, Cosmetic agent, food agent |
Sprout (IC50=94.1±2.1%) |
60 |
Phaseolus vulgaris L.(Snap bean) (Leguminosae) |
Analgesic, anti-obesity, antibacterial, anticancer, antidiabetic, antifertility, anti-inflammatory, antioxidant, hepatoprotective, hypolipidemic, litholytic agent. Inhibitor of trypsin and α-amylase. |
Pod (IC50=89.1±2.1%) |
60 |
Rheum rhaptonticum L. (Polygonaceae) |
Antioxidant, antimicrobial, antifungal, anti-inflammatory agent |
Stalk (IC50=93.5±0.7%), |
60 |
Fragaria Xananassa Duch.(Strawberry) (Rosaceae) |
Antioxidant, cholesterol lowering, anticancer, antioxidant and anti-againg agent. Treatment against oral diseases and disorders of urinary tract. Treatment against leukemia |
Root (IC50=87.6±2.7%) |
60 |
Daucus carota L. (Carrot) (Umbelliferae) |
Antioxidant, anticancer, ati-diabetic-anti-hypertensive,hepatoprotective, wound healing, antibacterial, antifungal, cardioprotective, anti-inflammatory, analgesic, fertility properties. |
Root (IC50=104±1.7%), |
60 |
Apium graveolens L. (Celery) (Umbelliferae) |
Anti-diabetic, antifungal, anti-inflammatory, anticoagulant agent, reatment against cardiovascular and gastrointestinal disorders |
Stalk (IC50=108.8±3.9%) |
60 |
Coriandrum sativum L. (Coriander) (Umbelliferae) |
Antioxidant, antifungal and antibacterial agent, Treatment against cognition, dementia, anxiety, flavoring agent, cosmetic agent |
Leaves (no inhibition) |
60 |
Anethum graveolens L. (Dill) (Umbelliferae) |
Antimicrobial, anti-inflammatory, analgesic, hyperlipidemic, agent, treatments of gastrointestinal disorders, treatments against disorders of the reproductive system |
Leaves IC50=88.1±2.8%) |
60 |
Foeniculum vulgare Mill. (Fennel) (Umbelliferae) |
Antifungal, antibacterial, antioxidant agent |
Stalks (IC50=94.1±1.5%) |
60 |
Petroselinum crispum Nym. (known as Parsley) |
Antimicrobial, hypotensitive, diuretic, laxative and antispasmolitic agent |
Leaves (IC50=88.1±3.4%) |
60 |
Capsicum anmuum L. (Pepper) (Solanaceae), |
Antioxidant, antimicrobial, antitumor properties. Treatment of rheumatism, stiff joints, bronchitis, chest colds, arthritis, heart arrhthmias, osteoarthritis |
Fruit (IC50=79.5±10.5%) |
60 |
Solanum melongena L. (Eggplant) (Solanaceae). |
Antihaemorrhoidal, astringent and hypotensive properties. Reduction of blood cholesterol levels, antidote to poisonous mushrooms, wound healing agent, treatment of intestinal hemorrhages, piles and toothache. |
Fruit (no inhibition) |
60 |
Lycopersicon esculentum mill.(Tomato) (Solanaceae) |
Antioxidant, antimicrobial, antidiabetic, anti-inflammatory. Treatment of dysentery, back pain, rheumatism, lowering cholesterol, rheumatism, proper functioning of brain |
Fruit (no inhibition) |
60 |
Colocasia esculenta Schott (Taro) (Araceae) |
Antimicrobial, antihepatotoxic, antidiabetic, anti-lipid, anti-inflammatory, antifungal, antimetastatic properties |
Tuber extracts (no Hyal inhibiton) |
60 |
Cucumis Sativus L. (Cucumber) (Cucurbitaceae) |
Antioxidant, antimicrobial, anti-aging properties. Glycemic reduction, improving immunity and boosting metabolism properties |
Fruit (no Hyal inhibiton) |
60 |
Cucurbita maxima Duch. (Pumpkin) (Cucurbitaceae) |
Antioxidant, antimicrobial, anticancer agent. Control of blood glucose levels. Treatmens of urinary tract diseases. |
Fruit (no Hyal inhibition) |
60 |
Asparagus officinalis L. (Asparagus) (Liliaceae) |
Antibiotic, diuretic, antispasmodic, anticancer, laxative, sedative, aperient properties. Treatment against cardiovascular diseases. |
Sprout (no Hyal inhibition) |
60 |
Allium tuberosum Rottler (Chinese chive)(Liliaceae) |
Treatment against asthma, abdominal pain, diarrhea and diabetes. Aphrodisiac agent |
Leaf (no Hyal inhibition) |
60 |
Allium schoenoprasum L. (Chive) (Liliaceae) |
Antioxidant properties |
Leaf (no Hyal inhibition) |
60 |
Allium sativum L. (Garlic) (Liliaceae) |
Wound healing, anticancer, antioxidant, anti-inflammatory antidiabetic properties. Treatment against skin, disorders, urinary diseases, kidney stone, epilepsy, cataract. asthma, arthritis, bronchitis, chronic fever e.c Spice and flavoring agent |
Buld (no Hyal inhibition) |
60 |
Allium cepa L. (Onion) (Liliaceae) |
Antioxidant, anti-inflammatory, antimicrobial, analgesic, anti-diabetic, anti-hypertensive, hypolipidemic and immunoprotective properties. |
Buld (no Hyal inhibition) |
60 |
Allium fistulosum L. (Welsh onion ) (Liliaceae) |
Anti-microbial, anti-fungal, anti-termite, wound healing agent. Treatment against common cold, eyesight disorders, headache, heart disorders. Reduces serum lipid concentrations and fat accumulation, food agent |
Leaf (no Hyal inhibition) |
60 |
Abelmoschus esculentus Moench (Okra) (Malvaceae) |
Antioxidant, antitumor properties. Treatment against type 2 diabetes, cardiovascular disease and digestive disorders |
Pod (no Hyal inhibition) |
60 |
Zingiber officinale Rosc. (Ginger ) (Zingiberaceae) |
Antioxidant, anticancer, antimicrobial, antidiabetic, hepatoprotective, nephroprotecyive, immunomodulatory, anti-inflammatory, larvicidal, analgesic properties |
Root (no Hyal inhibition) |
60 |
Zingiber mioga Rose (Mioga ginger) (Zingiberaceae) |
Anti-inflammatory, antimicrobial, anticancer, anti-platelet aggregation properties, treatment against rheumatism and coughing |
Flower (no Hyal inhibition) |
60 |
Skin disorders |
Ethanolic extract (>57% Hyal inhibition at 250 μg/ml and >82% at 500 μg/ml. IC50=330 μg/ml) |
61 |
|
Glycyrrhiza uralensis |
Skin disorders |
Plant extract (10-78% Hyal inhibition at a range of 100-1000 μg/ml, IC50=210 μg/ml) |
61 |
Althaea officinalis (Marshmellow) |
Pharygeal irritation, gastrointestinal disorders |
Extracts (IC50=7.7 mg/ml for Hyal-1) scopoletin-7-O-α-L-rhamnopyranosyl-(1″→6′)-β-D-glucopyranoside (IC50=84%) hypolaetin-8-O-β-D-glucopyranosyl-(1‴→4″)-β-D-glucuronopyranoside (IC50=73%) 4′-O-methylhypolaetin-8-O-β-D-(2″-O-sulfo)glucopyranoside (IC50=73%) 4′-O-methylhypolaetin-8-O-β-D-(2″-O-sulfo)glucopyranoside (IC50=83%) |
62 |
Allium sativum L. (Garlic) |
Metabolic disorders, food spice |
quercetin (IC50=23.0 mM), isoquercitrin (quercetin 3-O-β-D-glucopyranoside) (IC50=20.9 mM) reynoutrin (quercetin-3-O-β-D-xylopyranoside) (IC50=22.1 mM) kaempferol (IC50=36.3 mM) astragalin (kaempferol 3-O-β-D-glucopyranoside) (IC50=26.5 mM) isorhamnetin (IC50=55.4%) isorhemnetin 3-O-β-D-glycopyranoside (IC50=50.4 mM) |
63 |
Hennae folium |
Anti-inflammatory, antidiarrhetic properties, skin protective agent |
(IC50=no reported, Inhibition 0%) at 10 mg/ml |
64 |
Equiseti herba |
Anti-inflammatory, antibacterial properties, Treatment against urinary tract infections |
(IC50=1.5 mg/ml, inhibition 100%) |
64 |
Betulae folium
|
Anti-inflammatory properties, treatmenst against arthritis |
(IC50=no reported, Inhibition 61%) |
64 |
Ononidis radix |
Anti-inflammatory and diuretic properties |
(IC50=1.7 mg/ml, Inhibition 81%) |
64 |
Buchu folium |
Anti-inflammatory, treatment against urinary tracy infections and kidney disorders |
(IC50=no reported, Inhibition 21%) |
64 |
Maydis stigma |
Antioxidant, diuretic agent, reduces hyperglycemia, anti-fatigue and anti-depressant properties |
(IC50= no reported, Inhibition 4%) |
64 |
Malvae sylvestris flos |
Anti-inflammatory, diuretic properties, Treatment against circulatory, central nervous system, dermatological, digestive, gynecological and metabolic disorders |
(IC50=1.4 mg/ml, inhibition 100%) |
64 |
Solidaginis herba |
Anti-inflammatory, antibacterial, treatments against the infections of the urinary tract |
(IC50=4.9 mg/ml, Inhibition 100%) |
64 |
Chebulae fructus |
Anti-inflammatory, treatments against diarrhea, bleeding, chronic bronchitis, chronic laryngitis, ulcers, bacillary dysentery and tonsillitis |
(IC50=no reported, Inhibition 0%) |
64 |
Coptis rhizome |
Anti-inflammatory properties, treatments against typhoid, bacillary dysentery, tuberculosis, pertussis, epidemic cerebrospinal meningitis |
(IC50=no reported, Inhibition 0%) |
64 |
Cranberry |
Anticancer, diuretic, antipyretic, antiseptic, antidiabetic properties, treatment against chronic fatigue syndrome, pleurisy and scurv |
(IC50=no inhibition, Inhibition: 10%), |
64 |
Althaeae radix |
Anti-inflammatory, diuretic, astringent, cooling, febrifuge, expectorant, emmenagogue, demulcent agent, Tretment against skin, kidney and uterus disorders |
(IC50=no inhibition, Inhibition: 60%), |
64 |
Hydrastis rhizoma |
Anti-inflammatory agent, Treatment against circulatory, cardiovascular, central nervous system, dermatological, digestive, gynecological, metabolic, respiratory and urinary disorders |
(IC50=no inhibition, Inhibition: 7%), |
64 |
Mahonia radix |
Anti-inflammatory, wound healing agent, treatment against tuberculosis, dysentery, periodontitis, eczema, pharyngolaryngitis |
(IC50=no inhibition, Inhibition: 26%). |
64 |
Palaquium gutta |
Anti-inflammatory agents, treatment against mouth disorders |
Methanolic bark extract: (IC50=88.2%), |
59 |
Pouteria obovatta |
Anti-inflammatory, treatments against skin disorders |
Methanolic bark extract: (IC50=90.47%) |
59 |
Payena dasyphylla |
Anti-inflammatory agent, Treatment against arthritis |
Methanolic bark extract: (IC50=91.63%) |
59 |
Uncaria villosa |
Anti-inflammatory and antioxidant properties |
Methanolic bark extract: (IC50=55.20%) |
59 |
Palaquium qutta |
Anti-inflammatory agent, treatment against mouth disorders |
Leaf extract: (IC50=51.35%) |
59 |
Pauteria oobova |
Anti-inflammatory, treatment against skin disorders |
Leaf extract: (IC50=55.63% ) |
59 |
Onion |
Antioxidant, antibacterial and anti-inflammatory agent, nutraceutical agent |
Quercetin (IC50=27% at 750 μΜ) quercetin 3,4 diglucoside ((IC50=38% at 750 μΜ) |
63 |
Lythrum salicaria L. (Lythraceae) |
Anti-inflammatory agent, treatment against dysentery, eczema, haemorhoidal disease, chronic intestinal catarrh, periodontosis, gingivitis and varicose veins |
(IC50=64.9±6.3% at 10 μg/ml) Flower extract (IC50=94.4±0.6% at 20 μg/ml) Isolated elagitannins: Salicarinin A (IC50=1.06±0.1 μΜ) Salicarinin (IC50=1.6±0.2 μΜ) Salicarinin C (IC50=2.5±0.2 μΜ) Vescalagin (IC50=3.1±0.2 μΜ) Castalagin (IC50=3.1±0.2 μΜ) |
15 |
Geum urbanum L. (Rosaceae) |
Treatment against periodontitis stomach disorders, anti-bleeding, anti-inflammatory properties for gums and mucous membranes |
(IC50=25.6±5.1% at 10 μg/ml) |
15 |
Rubus idaeus L. (Rosaceae) |
Antioxidant, antibacterial, antioxidant, antitumor properties, treatment against uterous disorders |
(IC50=21.2±2.0% at 10 μg/ml) |
15 |
Rubus fruticosus L. (Rosaceae)
|
Antibacterial, antinociceptive, antiproliferative, analgesic properties |
(IC50=12.5±6.8% at 10 μg/ml) |
15 |
Potentilla erecta L Raeusch (Rosaceae)
|
Antidiarrheal, anti-ulcerogenic, hemostatic, antihemorrhoidal, wound- healing, skin photoprotecting, free radican scavenging agents |
(IC50=5.8±4.1% at 10 μg/ml) |
15 |
Filipendula ulmaria (L) (Rosaceae)
|
Anti-inflammatory, antipyretic, analgesic, anti-rheumatic and astringent properties |
(no inhibition at 10 μg/ml) |
15 |
Maxim Potentilla anserine L. (Rosaceae) |
Wound healing, homeostatic agent, Treatment against tooth ache, dysentery, ulcers of the mouth, inflammations of the throat |
(no inhibition at 10 μg/ml) |
15 |
Agrimonia eupatoria L. (Rosaceae) |
Antioxidant, anti-inflammatory, astringent and diuretic properties |
(no inhibition at 10 μg/ml) |
15 |
Geranium pratense L. (Geraniaceae) |
Analgesic, febrifuge, anti-inflammatory agent, Treatment against inflammation of the lungs, influenza, pain and swellings of the limbs |
(IC50=16.1±3.6 at 10 μg/ml) |
15 |
Geranium robertianum L. (Geraniaceae) |
Anti-inflammatory, antibacterial, antidiabetic, anti-cancer, antiallergic, diuretic and haemostatic properties |
(IC50=7.2±3.8% at 10 μg/ml) |
15 |
Aesculus hippocastanum L. (Hippocastanaceae) |
Anti-inflammatory agent, treatment against venous bites, bronchitis, dysentery and hemorrhoids |
(no inhibition at 10 μg/ml) |
15 |
Eleutherococcus spp. Inflorescences |
Antioxidant and anti-inflammatory agent |
E. gracilistylus (16.4±0.05% Hyal inhibition), E. giraldii (60.7±0.01%, Hyal inhibition), E. senticosus (57.5±0.05% Hyal inhibition). |
65 |
Humulus Lupulus L. (Hop Flowers) |
Inhibition of bone resorption. Nitric oxide production. Anticancer agent. Estrogenic activity, aromatic agent in beer |
quercetin (IC50= 54.63± 3,16% at 200 μΜ),
rutin (IC50=61.87±5.48% at 200 μΜ), kaempferol (IC |
66 |
Ononis spinosa L. (Restharrow roots) (Fabaceae) |
Inflammations of the urinary tract |
Dickloromethane extract (IC50=0.19 mg/ml) Isolated subractions: (86%& and 92% at 1 mg/ml) Sativanone (IC50=150.70 μΜ at 250 μΜ) |
67 |
Pothos scandens L. (Araceae) |
Skin disorders, asthma, cancer |
Pothobanoside A (46.7% Hyal inhibition at 200 μΜ) |
58,68 |
Phyllanthus muellerianus Exell (Kuntze) (Euphorbiaceae) |
Healing agent against wounds and other infections Aqueous extracts of the stem bark show antimicrobial character against Streptococcus and Clostridium species |
Hydroalcoholic extract (1:1 v/v) (IC50= 80 μg/ml of Hyal-1) Hydroalcoholic extracts fractions: (57.1% and 66.5% inhibition of Hyal-1) Three hydroalcoholic subractions (94%, 100% and 84% Hyal-1 inhibition at a concentration of 1 mg/ml) Isolated constituents: Chebulanin (IC50=132 μΜ) Mucic acid (43.8% Hyal-1 inhibition at 250 μΜ) Furosine isomers (21.3% Hyal-1 inhibition at 250 μΜ) Quercetin rutinoside ( 21.3% Hyal-1 inhibition at 250 μΜ) kaempferol (8.9% Hyal-1 inhibition at 250 μΜ) |
69,70 |
Keiskea japonica Lamiaceae) |
Antioxidant, anti-inflammatoyry, antidiuretic properties |
80% Acetone extract (IC50=608 μg/ml) Isolated constituents: shimobashiric acid C (88.7% Hyal inhibition at 596 μΜ) rosmarinic acid (86.5% Hyal inihibition 309 μΜ) acacenin7-O-β-D-glucuropyranoside (86.5% Hyal inhibition at 267 μΜ)
|
71 |
Clethra barbinervis (Lamiaceae) |
Anti-inflammatory, anti-allergic, anti-aging properties |
Aqueous extract (88.6% Hyal inhibition at 2.0 mg/ml) Isolated constituents: epicatechin (IC50= 0.94 mM) triterpene saponins: ryobusaponin B (IC50=1.25 mM), ryobusaponin C (IC50=0.68 mM) hemsganoside B (IC50 =0.82 mM) |
72 |
Barathranthus nodiflorus |
Antioxidant and anti-inflammatory properties, free radical scavengers |
Ethanolic bark extracts (IC50=42.31±2.00 %) |
73 |
Diospyros ebenum |
Antioxidant and anti-inflammatory properties, free radical scavengers |
Ethanolic bark extracts (IC50= 41.60±1.18 %)
|
73 |
Acronychia pedunculata |
Antioxidant, antibacterial and anti-inflammatory properties, free radical scavengers |
Ethanolic bark extract (IC50= 36.60±1.02 %) |
73 |
Flacourtia indica |
Anti-inflammatory, antioxidant, diuretic properties, Treatment against rheumatism |
Ethanolic plant extract (IC50=36.67±2.23 %). |
73 |
Prismatomeris tetrandra (Roxb.) K. Schum |
Wounds, bronchitis, snakebites |
Ursolic acid (IC50=103.18±1.70 μΜ), 3β, 19, 23-trihydroxyurs-12-en-28-oic acid (286.95±10.28 μΜ) and 3β-acetylolean-12-en-28-oic acid (1466.5±2.37 μΜ).
|
74 |
Scilla scilloides Druce (Liliacease) |
Medicinal agent for blood circulatory activation, dermal disorders, antidote, antimicrobial, anticancer |
Ethyl acetate bulb extract (IC50= 169 μg/ml) Homoisoflavones: Scillavone B (IC50=748 μΜ) 3-(3, 4-Dihydroxybenzylidene)-5,7-dihydroxy-6-methoxy—chroman-4-one (IC50 =887 μΜ) |
75 |
Cimicifuga Rhizoma (mixture of the Rhizomes of Cimicifuga dahurica and C. heracleifolia) |
Antipyretic, analgesic, would healing agent |
Cimicifugic acids 50% Hyal inhibition at <200 μΜ |
76,77 |
Gaultheria procumbens L. (Estern teaberry, checkerberry) (Ericaceae) |
Northern traditional treatment |
Chloroform extract (IC50=282.15±10.38 μg/ml) which was 1.3 time) Terpenoid constituents oleanolic acid (10.11% and ursolic acid (28.82% ) |
55-57 |
Clitoria Ternatea L. (Butterfly pea) (Fabaceae) |
Nervous system disorders (stress, anxiety, depression etc) |
Methanolic (IC50 =18.08 ± 0.46 μg/ml) Ethyl acetate (IC50 =28.01 ± 0.48 μg/ml) n-butanolic (IC50 =38.84 ± 0.41 μg/ml) |
10,78,79 |
Takuran (Lamiaceae) |
Menstrual disorder, menstrual cramps, cardiovascular diseases, anti-allergic agent |
Clinopodic acid C (IC50=80.1 μΜ), Lycopic acid A (IC50=134 μΜ), Clinopodic acid E (IC50=82.8 μΜ) and Lycopic acid B (IC50=141 μΜ). Rosmarinic acid (IC50=309 μΜ) Scizotenuin A (IC50=241 μΜ).
|
80 |
Meehania urticifolia (Makino ) (Lamiaceae) |
Anti-inflammatory and antibacterial properties |
Two isomers of rosmarinic acid (IC50=275 μΜ and 183 μΜ) Rosmarinic acid (IC50=164 μΜ) |
81 |
Carissa carandas (Apocynaceae) |
Antipyretic, analgesic, anti-rheumatic, anti-inflammatory, anti-diabetic agent etc. |
Steroid fraction of the plant's extract (IC50 = 5.19 mM) |
82 |
Triphala guggulu (Combination of three fruits: Phyllanthus emblica (amalaki or TI), Termilaia chebula (haritki or T2) and Terminalia belerica (bibhitaki or T3) |
Wound healings, ear-nose-throat system disorders |
Hydroalcoholic extracts: (84.60±8.71%) of Hyal at a concentration of 4 mg/ml) Aqueous extract: (85% Hyal inhibition at 0.10 mg/ml) Separate constituents: P. emblica (T1) (100% Hyal inhibition at 0.30 mg/ml) T. chebula (T2) (100% Hyal inhibition at 15 mg/ml) T. belleirca (T3) (no efficient Hyal inhibition) (T1): (T2): (T3) 1:1:1 (100% Hyal inhibition at 0.30 mg/ml) |
83 |
Eleutherococcus Maxim. Genus |
Medicinal agents, dietary agents |
Species: E. gracilistylus (IC50= 16.4±0.05%), E. giraldii (IC50= 60.7±0.01%) E. senticocus (IC50=57.5±0.05%) |
65 |
Eisenia bicyclis (Brown alga) |
Antioxidant agent, food agent |
8,8΄- bieckol (IC50=40 μΜ) Dieckol (IC50= 120 μΜ) Phlorofucofuroeckol A (IC50= 140 μΜ) Acetylated derivatives of 8,8΄-bieckol (IC50= 15.1% ) |
84,85 |
Clinopodium gracile (Lamiaceae) |
Anti-inflammatory, antitumor, antihyperglycemic properties, anti-hyaluronidase agent |
Clinopodic acid J (IC50=206 μΜ), Clinopodic acid K (ΙC50=63 μΜ), Clinopodic acid L (IC50=26 μΜ), Clinopodic acid M (IC50=19 μΜ), Clinopodic acid N (IC50=161 μΜ), Clinopodic acid O (IC50=66 μΜ), Clinopodic acid P (IC50=25 μΜ), Clinopodic acid Q (IC50=165 μΜ), Rosmarinic acid86 (IC50=226 μΜ), Clinopodic acid I86 (IC50=112 μΜ), Clinopodic acid E86 (IC50=40 μΜ), 8-epiblechnic acid87 (IC50=653 μΜ) Lithospermic acid (IC50=36μΜ), Salvianolic acid B (IC50=107 μΜ), Salvianolic acid A (IC50=206 μΜ), Cosmosiin (IC50>1000 μΜ) apigenin-7-O-(6-O-malonyl)glucoside1 (IC50=360 μΜ) apigenin-7-O-rutinoside<sup>88</sup><sup>88</sup><sup>88</sup><sup>88</sup><sup>88</sup><sup>88</sup><sup>88</sup><sup>88</sup><sup>88</sup><sup>88</sup><sup>88</sup><sup>88</sup> (IC50>1000) apiin (IC50=533 μΜ) luteolin-7-O-glucoside (IC50=695 μΜ) luteolin-7-O-(6-O-malinyl)glucoside (IC50=324 μΜ) naringenin-7-O-rutinoside (IC50>1000 μΜ) |
89 |
Canavalia gladiate DC (Red sword beans of no fermentation) |
Anti-inflammatory and antioxidant properties |
IC50=35.64±0.44% Hyal inhibition at a concentration of 5 mg/ml IC50=45.73±0.78% Hyal inhibition at a concentration of 10 mg/ml IC50=76.08±0.12% Hyal inhibition at a concentration of 25 mg/ml |
58 |
Canavalia gladiate DC (Red fermented sword beans) |
Anti-inflammatory and antioxidant properties |
IC50=39.28±0.59% Hyal inhibition at a concentration of 5 mg/ml IC50=46.64±1.18% Hyal inhibition at a concentration of 10 mg/ml IC50=77.37±0.19% Hyal inhibition at a concentration of 25 mg/ml |
58 |
Table S4: Studied natural secondary metabolites for their inhibitory potency towards Hyaluronidase.
Inhibitor |
Chemical Family |
Source |
IC50 |
Ref. |
Glycyrrhizin |
Triterpenes |
|
IC50=0.440 mM, Hyal B (Streptococcus agalactiae) inhition IC50=0.455 mM rHyal B (recombinant Hyal from S. agalactiae) inhibition |
84 |
Glycyrhetinic acid |
Triterpenes |
|
IC50=0.060 mM Hyal B (Streptococcus agalactiae) inhibition IC50=0.080 mM rHyal B (recombinant Hyal from S. agalactiae) inhibition |
84 |
Gypsophila saponin 2 |
Trieterpenoid Saponin glucosides |
|
IC50=108 μΜ Human Hyal-1 |
64 |
SA1657 |
Trieterpenoid Saponin glucosides |
|
IC50= 371 μΜ Human Hyal-1 |
64 |
SA1641 |
Trieterpenoid Saponin glucosides |
|
IC50=177 μΜ Human Hya;-1 |
64 |
Glycyrrhizinic acid |
Triterpenes |
|
IC50=177 μΜ Human Hual-1 inhibition |
64 |
β-caryophyllene |
Essential oils |
Melaleuca leucadendron Linn. Essential oils extract |
IC50= 4.17 μg/ml
|
90 |
1.8-cineol |
Essential oils |
Melaleuca leucadendron Linn Essential oils extract |
1.17 mg/ml |
90 |
Naringenin |
Flavonoids |
|
IC50=9.58±0.25% at 200 μΜ |
91 |
7-O-tert-butoxycarbonylmethyl naringenin |
Flavonoid derivatives |
|
IC50=30.68±0.21% at 200 μΜ |
91 |
7-O-butyl naringenin |
Flavonoid derivatives |
|
IC50=44.84±0.28% at 200 μΜ |
91 |
7-O-(a-methoxycarbonyl)benzyl naringenin |
Flavonoid derivatives |
|
IC50=5.80±0.13%% at 200 μΜ |
91 |
7-O-(BnO-L-Leu-carbonylmethyl) naringenin |
Flavonoid derivatives |
|
IC50=18.72±0.43% at 200 μΜ |
91 |
liquiritigenin |
Flavanone |
Glycyrrhiza glabra |
Weak Hyal inhibition (IC50= 740 μΜ) |
92 |
|
|
|
IC50=680±43 μmol/L |
|
isoliquiritegin |
Flavanone |
Glycyrrhiza glabra |
Potent Hyal inhibition (IC50= 64 μΜ) |
93 |
Baicalein |
Flavone |
Scutellaria baicalensis |
Low Hyal inhibition (IC50=165 μΜ) |
94 |
paeniflorin |
Phenolic derivative |
Paeonia albiflora |
Potent Hyal inhibition |
94 |
Table S5: Plants, extracts and isolated compounds that have been studied for their inhibitory properties towards Tyrosinase.
Plant |
Medicinal use |
Inhibition towards Tyr |
Ref. |
Morus australis |
Antioxidant, anti-inflammatory, anticancer properties, treatment against postprandial hypoglycemic disorders, anti-tyrosinase agent, cosmetics and skin-whitening agent, food agent, production of wine and vinegar |
Isolated chalcones: (E )-1,3-bis(2,4-dixydroxyphenyl)1-prop-2-en-1-one (1) (IC50=0.21 μΜ) (E )- 1-(2,4-dihydroxy-3-(30methylbut-2-en-1-yl)phenyl)-3-(2,4-dihydroxyphenyl) prop-2-en-1-one (2) (IC50=0.82 μΜ) (1΄R, 2΄R, 3΄΄R)-2΄-(2,4-dihydroxy-3-(3-methylbut-2-en-1-yl)benzyl)-3΄΄- (E )-(2,4-dixydroxyphenyl)-1-hydroxyallyl-5΄-methyl-1΄,2΄,3΄',6΄-tetrahydro-[1,1΄,3΄',1΄΄-terphenyl]-2,2΄΄,4,6΄΄-tetraol (3) (IC50=4.62 μΜ) (E)-1-(2,4-dihydroxy-3-((Z)-4-hydroxy-3-methylbut-2-en-prop-2-en-1-one (4) (IC50=0.17 μΜ) |
95,96 |
Gastrodia elata |
Treatment against neurodegenerative disorders, paralysis, stroke, dementia, vertigo and epilepsy |
Bis-(4-hydroxybemzyl) sulfide (IC50=0.53 μΜ, competitive inhibition) |
95 |
Cassia fistula (Fabacee) (Golden shower) |
Antioxidant, anticancer, antibacterial, antifungal, antidiabetic, Treatment against skin disorders |
Flower extract: (IC50=50-200 μg/ml) |
97-100 |
Pyracantha fortunea |
Digestive properties, cosmetic and skin-whitening agent |
A (3,3΄-dihydroxy-5΄-methoxy-(1,1΄-biphenyl)-4-O-β-D-glucoside B (4΄-hydroxy-2,3΄,5΄-trimethoxy-(1,1΄-biphenyl)-2΄-O-β-D-glucoside C (4΄-hydroxy-3,5΄-dimethoxy-(1,1΄-biphenyl)-2-O-β-D-glucoside D (2,4΄-dihydroxy-3-5΄-dimethoxy-(1,1΄-biphenyl)-3-O-β-D-glucoside (IC50=0.07 mM) E 3,4΄-dihydroxy-3΄,5΄-dimethoxy-(1,1΄-biphenyl)-4-O-β-D-glucoside |
101 |
Crataegus pinnatifida (Hawthorn) (Rosaceae) |
Medicinal agent, skin treatment, cosmetic agent, food agent |
A: 8-O-4΄-neolignan-9΄-glucopyranoside (37.58% Tyr inhibition at 500 μg/ml) B: (7R,8S)-erythro-3,7,3΄-trimethoxy-8-O-4΄-neolignan-9΄-O-β-D glucopyranoside (known as pinnatifidaninside B) (34.54% Tyr inhibition at 500 μg/ml) C: pinnatifidaninside C (31.5% Tyr inhibition at 500 μg/ml) D: pinnatifidaninside D (32.97% Tyr inhibition at 32.97%) E: 7R,8S-dihydrodehydrodiconiferyl alcohol-9-O-β-D-glucoside (46.00% Tyr inhibition at 500 μg/ml) F:7R,8S-dihydrodehydrodiconiferyl alcohol-9΄-O-β-D-glucoside (58.15% Tyr inhibition at 500 μg/ml) |
103 |
Humulus Lupulus |
Sleep disorders, restlessness, excitability promotion, digestive agent, treatments against spasma, cough, fever, inflammation, earache, toothache, food agent |
n-Hexane extract (no Tyr inhibition) Acetone extract (no Tyr inhibition) Methanol-1 extract (no Tyr inhibition) Methanol-2 extract (no Tyr inhibition) Methanol-3 extract (no Tyr inhibition) 25% aqueous ethanol extract (no Tyr inhibition) |
104 |
Artocarpus xanthocarpus Merr. (Moraceae) |
Free radical scavenging and antityrosinase propeties |
artoxanthol (IC50=5.7±0.3 μΜ, mixed type competitive inhibition) alboctalol (IC50=6.4±0.3 μΜ, mixed type competitive inhibition) steppogenin105 (IC50=1.9±0.1 μΜ) (competitive inhibition) norartocarpetin (IC50=0.9±0.1 μΜ, competitive inhibition) resveratrol (IC50=4.9±0.3 μΜ) oxyresveratrol (IC50=1.0±0.5 μΜ) (non-competitive inhibition) chlorophorin (IC50=2.5±0.4 μΜ) artoxanthocarpuone A (ΙC50=59.3±3.7 μΜ, mixed type competitive inhibition) hydroxylakoochin A (IC50=97.5±1.5 μΜ) artoxanthochromate (IC50=85.8±0.1 μΜ) morusin (IC50=75.0±4.1 μΜ) albanin A (IC50=58.2±5.1 μΜ) cudraflavone C (IC50=40.8±1.9 μΜ) |
106,107 |
Malus doumeri (Formosan Apple) (Rosaceae) |
Antioxidant agent, HNE inhibitior, Matrix Metalloproteinase inhibitor, Tyrosinase inhibitor |
phloretin (IC50=28.99±3.57% Human tyrosinase inhibition), phloridzin (IC50=11.32±2.34% Human tyrosinase inhibition, 3-hydroxyphloridzin (IC50=22.53±2.33% Human tyrosinase inhibition), Quercetin (IC50=35.84±2.94% Human tyrosinase inhibition), chrysin (IC50=22.96±5.63% Human tyrosinase inhibition), chrysin-5-glucoside (IC50=16.64±2.84% Human tyrosinase inhibition), 3-hydroxyphloretin (IC50=80.50±1.40% Human tyrosinase inhibition, cellular Tyrosinase inhibition: IC50=32 μΜ), protocatechuic acid (IC50=33,45±1.59% Human tyrosinase inhibition), catechol (IC50=78.13±0.47 % Human tyrosinase inhibition, cellular tyrosinase inhibition: 22 μΜ), rutin (IC50=16.94±2.31% Human tyrosinase axctivity), pynosylvin (IC50=31.85±1.92% Human tyrosinase inhibition) |
108,109 |
Cinnamomum osmophloeum Kanehira |
Antioxidant, anti-inflammatory and antibacterial properties, flavoring and food agent |
Plant extracts: (medium inhibition of mushrooum Tyr at 200 μΜ) |
110 |
Xanthium strumarium L.(Xanthii fructus) (Asteraceae) |
Leucoderma, fever, headache |
Ethyl acetate extract (IC50=0.26 mg/ml) Protocatechuic acid (IC50=2.53±0.06 mM, competitive inhibition), chlorogenic acid (IC50=1.05±0.06 mM, mxed-type inhibition), 3,5-di-O-caffeoylquinic acid (IC50=1.07±0.08 mM, competitive inhibition), 1,5-di-O-caffeoylquinic acid (IC50=1.19±0.03 mM, competitive inhibition), 1,3-di-O-caffeoylquinic acid (IC50=1.67±0.08 mM, mixed-type inhibition), 1,3,5-tri-O-caffeoylquinic acid (IC50=1.16±0.06 mM, mixed type inhibition) |
111 |
Metasequoia glyptostroboides |
Antioxidant, antibacterial, antifungal and antidermatophytic properties |
Taxiquinone (52.32% Tyr inhibition at 1000 μg/ml) |
112 |
Koompassia malaccensis |
Anticiabetic, antioxidant, antimalarial, antidysentery and antifever properties |
Taxifolin, flavanol rhamnosides (5.86-25.9% myshroom Tyr inhibition) |
113 |
Aloe |
Anti-inflammatory, anti-viral, anti-bacterial, anti-cancer anti-diabetic, anti-allergy properties, cosmetics agent, health drinks and beverages agent |
|
114-117 |
Chloranthus tianmushanensis |
Anti-tyrosinase agent |
Terpenoids extracted from leaves (potent Tyr inhibition in a dose dependent manner) |
118 |
Heterothea inuloides (Arnica) |
Skin disorders |
Plant extracts (IC50= 190 μg/ml) Quercetin (IC50= 22 μg/ml) Kaempferol (IC50= 67 μg/ml) |
119 |
Buddleia coriacea (Logariaceae) |
Antimelanogenic properties |
Buddlenoid A (IC50= 0.39 mM) Buddlenoid B (IC50= 0.44 mM) |
120 |
Dillenia indica (Elephant apple) (Dilleniaceae) |
Antitumour agent, flavoring agent |
Betulinic acid (Monophenolase inhibitory activity at 80 μΜ, diphenolase inhibitory activity at 40 μΜ, non-competitive inhibitor) |
121 |
Calceolaria talcana (Calceolariaceae) |
Diureticm antimicrobial agent |
Ethyl acetate extract (IC50=97.7 μgml) Isolated constituents: verbascoside (IC50=108.4 μΜ, competitive inhibitor) martynoside (ΙC50=177.7 μΜ, competitive inhibitor) naphthaquinone (ΙC50= 91.2 μΜ, competitive inhibitor) quercetin (IC50=50 μΜ, competitive inhibitor) benzoic acid (ΙC50=640 μΜ, mixed type inhibitor) tannic acid (IC50=22 μΜ, competitive inhibitor) |
122 |
Berberis Aristata (Berberidaceae) |
Hepatoprotective, antidiarrhoeal, cardiotonic, antidiabetic, antimicrobia, anticancer, anti-inflammatory agent |
Methanolic extract (97% monophenolase inhibition at 110 μg/ml, competitive inhibition) (50% diphenolase inhibition at 412, 01 μg/ml, mixed type inhibition) Aqueous extract (78% monphenolase inhibition at 110 μg/ml, competitive inhibition)50% diphenolase inhibition at 431.11 μg/ml, mixed tipe inhibition) |
123 |
Polygonum cuspidatum (Polygonaceae) |
Antibacterial, antioxidant, anti-inflammatory agent |
Supeercritical carbon dioxide fruit extract (<10.0% mushroom Tyr inhibition at 20 μg/ml, <10.0% inhibition at 50 μg/ml, 14.8±1.23% inhibition at 100 μg/ml, 22.6±1.61% inhibition at 250 μg/ml) |
124-126 |
Cudrania cochinchinensis |
Rheumatism, hepatitis, gonorrhea, bruising, constuted wounds |
95% Ethanolic extract (IC50=36.3 μg/ml) Root extract (IC50=56.2 μg/ml) Twig extract (IC50>400 μg/ml) Leaf extract (IC50>400 μg/ml) Isolated compounds: oxyresveratrol (IC50=2.33±0.24 μΜ), 2, 3-trans-dihydromorin (IC50=21.09±0.70 μΜ) 2, 3-cis-dihydromorin (IC50=31.14±0.49 μΜ). quercetin-7-O-β-D-glucoside (IC50=143.037±2.16 μΜ), kaempferol 7-O-β-D-glucopyranoside (IC50>100 μΜ) morin-7-O-β-D-glucoside (IC50= 196.33±4.47 μΜ) quercetin-7-O-b-D-glucoside (IC50= 143.0 mM) and quercetin- 3, 7-di-O-b-D-glucoside (IC50 > 1000 mM) kaempferol-7-O-b-glucopyranoside (low inhibition) kaempferol-3,7-di-O-b-glucopyranoside (low inhibition), dihydrokaempferol-7-O-b-D-qlucopyranoside (low inhibition) aromadendrin (low inhibition) |
127,128 |
Artocarpus heterophyllus |
Antioxidant, anti-inflammatory, antiaging and antimelanogenic agent, food agent |
Artocarpfuranol (IC50 <50 μΜ), dihydromorin (IC50 <50 μΜ), steppogenin (IC50 <50 μΜ), norartocarpetin (IC50 <50 μΜ), artocarpanone (IC50 <50 μΜ), artocarpesin (IC50 <50 μΜ), and isoartocarpesin (IC50 <50 μΜ) |
105,129-131 |
Campylotropis hirtella (Legumisae) |
Amenorrhea, metrorhagia, metrostaxis, gastric ulcers, benign prostate hyperplasia, food ingredient |
Methanolic root barks extract (IC50=60% at 20 μg/ml) 3΄-geranyl-5,7,2΄,4΄-tetrahydroxyisoflavanone (subs: L-tyrosine: IC50=2.9±0.3 μΜ, subs: L-DOPA: IC50=128.2±0.5 μΜ, competitive inhibition, with both substrates), 3΄-geranyl-5,7,3΄,5΄-tetrahy-droxyisoflavone (subs: L-tyrosine: IC50=92.0±0.2 μΜ, subs: L-DOPA: IC50>200 μΜ, competitive inhibition with L-DOPA as substrate), Neuroflavane (subs: L-tyrosine: IC50=0.03±0.006 μΜ, subs: L-DOPA: IC50=0.5±0.03 μΜ, competitive inhibition with both substrates), (E)-3-(3-(3,7-dimethylocta-2,6-dienyl)-2,4-dihydroxyphenyl)-3,5,7-trihydroxy-chroman-4-one (subs: L-tyrosine: IC50=18.4±0.8 μΜ, subs: L-DOPA: IC50=144.0±1.2 μΜ, competitive inhibition with both substrates) |
17,18,132,133 |
Flemingia philippinensis |
Antioxidant, anti-inflammatory, cytotoxicity, antiestrogenic, immunosuppressive properties, food agent |
Root methanolic extract (80% Tyr inhibition at 30 μg/ml) fleminchalcone A (subs. L-tyrosine: IC50= 1.01 μΜ, subs. L-DOPA: IC50=19.5 μΜ, monophenolase and diphenolase inhibitory activity, competitive inhibition) fleminchalcone B (subs. L-tyrosine: IC50=18.4 μΜ, subs. L-DOPA: IC50=32.6 μΜ, monophenolase and diphenolase inhibitory activity competitive inhibition) fleminchalcone C (subs. L-tyrosine: IC50= 1.28μΜ, (subs. L-DOPA: IC50= 5.22 μΜ, monophenolase and diphenolase inhibitory activity, competitive inhibition) flemichin D (subs. L-tyrosine: IC50= 1.79 μΜ, subs. L-DOPA: IC50=7.48 μΜ, monophenolase and diphenolase inhibitory activity, competitive inhibition ) lupinifoin, (subs. L-tyrosine: IC50= 11.2 μΜ, subs. L-DOPA: IC50=84.10 μΜ, monophenolase and diphenolase inhibitory activity, competitive inhibition) khonklonginol H (subs. L-tyrosine: IC50= 4.96 μΜ, subs. L-DOPA: IC50=20.4 μΜ, monophenolase and diphenolase inhibitory activity, competitive inhibition )
|
35,96,134,135 |
Herniaria glabra L. |
Hypotension, antispasmodic and diuretic properties, treatments against urinary tract infections, cystitis, irritable bladder, skin disorders |
Pure crude extract (7.39±0.59% Tyr inhibition at 1 mg/ml) Saponin fraction (8.50±1.40% Tyr activity at 1 mg/ml) bidesmoside herniaria saponin 8 (4.21±0.79% Tyr inhibition at 1 mg/ml) bidesmoide herniaria saponin 10 (8.44±1.69% Tyr inhibition at 1 mg/ml) bidesmoside herniaria saponin 11 (8.25±1.17% Tyr inhibition at 1 mg/ml) bidesmoside herniaria saponin 12 (7.73±1.04% Tyr inhibition at 1 mg/ml) bidesmoside herniaria saponin 13 (IC50= 9.82±1.35% Tyr inhibition at 1 mg/ml) monidesmoside herniaria saponin 16 (IC50= 7.30±1.22% Tyr inhibition at 1 mg/ml) monodesmoside herniaria saponin 17 (IC50= 3.64±0.72% Tyr inhibition at 1 mg/ml) bidesmoside herniaria saponin 1 (IC50= 8.77±1.27% Tyr inhibition at 1 mg/ml) monodesmoside herniaria saponin 4 (IC50= 3.39±1.69% Tyr inhibition at 1 mg/ml) bidesmoside herniaria saponin 5 (IC50= 9.75±1.53% Tyr inhibition at 1 mg/ml) monodemoside hrniaria saponin 6 (IC50= 2.18±0.97% Tyr inhibition at 1 mg/ml) monodesmoside herniaria saponin 7 (IC50= 8.40±0.50% Tyr inhibition at 1 mg/ml) |
8 |
Rhizophora mucrinata L. (Rhizophoraceae) |
Main source of carbon, vitamins, proteins, minerals, fatty acids, energy for humans and living organisms, climate change regulator |
Methanolic twig extract (IC50= 145.31±1.39 mg KAE (kojic acid equivalent/g) Methanolic leaf extract (IC50=±144.02 mg KAE (kojic acid equivalent/g) |
32,136 |
Eucalyptus globulus Labill (Timber tree) |
Flu, rheumatism, dysentery, eczema |
Ethanolic extract isolated compounds: isoiphionane sesquiterpene: 3β,11-dihydroxyisoiphion-4-one (IC50= 14.17 μΜ) 5-formyl-4-hydroxy-2-isopropyl-7-methylbenzofuran-6-Ο-β-D- glucopyranoside (known as eucalglobuide A) (IC50= 57.08± 2.52 μΜ) 5-formyl-6-hydroxy-2-isopropyl-7-mthylbenzofuran (IC50= 91.76± 3.41 μΜ) 4-Ο-β-D- glucopyranoside (eucalglobuside B) chromene glucoside (IC50=49.16 ±0.12 μΜ) 5β, 11-dihydroxy-iphionan-4-one (IC50= 10.08 μΜ) Proximadiol (IC50> 100 μΜ) (-)-α- eudesmol (IC50> 100 μΜ) (-)-globulol (IC50=9.79 μΜ) 4β, 10 α-aromadendranediol (IC50> 100 μΜ) vomifoliol (IC50> 100 μΜ) Isololiolide (IC50> 100 μΜ) Eucalyptin (IC50= 33.43±0.14 μΜ) (+)-rhododendrol (IC50=42.63±0.43 μΜ) 4-(4΄-hydroxy-3΄-methoxyphenyl)-2R-butanol (IC50= 21.65 μΜ) ursolic acid lactone (IC50> 100 μΜ) 3β-acetoxyurs-11-en-28 13 olide, pinoresinol (IC50= 74.57 ±0.26 μΜ). 2,5-dimethylhydroquinone (IC50> 100 μΜ) |
137 |
Mangifera indica L. (Mango) (Anacardiaceae) |
Diabetes, respiratory disorders, antimicrobial, anti-osteoporosis, andi-cardiovascular agent, the aqueous leaves extracts are consumed as tea |
Ethyl acetate extract (IC50= 17.62±1.26 μg/ml) n-butanol extract (IC50= 117.84±9.62 μg/ml) Aqueous extract (IC50=557.92±27.18 μg/ml) Major inhibitors: gallic acid, mangiferin, protocatecuic acid, hyperoside, quercitrin, quercetin-3-O-xyloside, derivatives pf benzophenone, epicatechin gallate, 1,2, 3, 4, 6-penta-O-galloy glucoside, luteolin-7-O-glucoside, kaempferol-3-O-glucoside, quercetin-3-O-rhamnoside Minor inhibitors: Isomangniferin, 6΄-O-(p-hydroxybenzoyl) mangiferin, glycosidic derivatives of irriflophenone such as iriflophenone 3-C-(2΄,3΄,6΄-tri-O-galloyl)-glucoside, glucosidic derivatives of maclurin [3-C-(2΄-O-galloyl)-glucoside and maclurin 3-C-(2΄,3΄-di-O-galloyl)-glucoside] |
138 |
Camellia Pollen |
Antitoxic, anti-inflammatory, antioxidant, antimutagrnic agent, food supplement |
Caffeine (IC50=18.5±2.31 μg/ml, reversible, noncompetitive inhibition, Ki=80 μΜ) Baicalein (IC50= 21.7 μg/ml) Brazilein (IC50= 6.07 mg/ml) Thobarbituric acid (IC50=1.15 mg/ml) |
139 |
Malcolmia littorea (L). |
Anti-inflammatory, antioxidant agents, use for pharmaceutical, food and cosmetic applications |
Methanolic root extract (IC50= 24.96±0.19 mg KAE/g) ethanolic root extract (IC50=25.32±0/04 mg KAE/g) aqueous root extract (IC50= 6.28±0.45 mg KAE/g) ethanolic aerial organ extract (IC50= 25.78±0.18 mg KAE/g) methanolic extract (IC50= 26.48 ±0.12 mg KAE/g) aqueous (IC50= 5.32 ±0.08 mg KAE/g) flower ethanolic extract (IC50= 26.56±0.23 mg KAE/g) methanolic (IC50= 25.85±0.21 mg KAE/g) aqueous (IC50= 4.33±0.39 mg KAE/g) |
140 |
Morinda morindoides (Baker) (Rubiaceae) |
Hemorrhoids, rheumatism, gonorrhea, malaria, diarrhea, amebiasis |
Aqueous seed extract (IC50= 24.56±0.69 mg KAE/g) Aqueous fruit extract (IC50= 43.70±1.26 mg KAE/g) Methanolic seeds extract (IC50= 72.40±0.46 mg KAE/g) Methanolic fruit extract (IC50= 73.59±1.24 mg KAE/g) |
141-144 |
Cakile Maritina Scop. (Sea rocket) (Brassicaceae or mustard) |
Scurvy, digestive disorders, diuretic disorders, dandruff, food agents for flavor improvement (leaves), bread making (ground roots) |
Aerial organs ethanolic extract (IC50=25.9±0.13 mg/ml) Aerial organs acetone extract (IC50=24.7±0.13 mg/ml) Aerial organs aqueous extract (IC50= 19.9±0.12 mg/ml) Fruit ethanolic extract (IC50= 24.9±0.25 mg/ml) Fruit acetone extract (IC50= 24.0±0.33 mg/ml) Fruit aqueous extract (IC50= 6.16±0.30 mg/ml) |
145-147 |
Leonurus japonicas (Yi Mu Cao) (Labiatae) |
Dysmenorrhea, menoxenia, amenorrhea, ulcerations etc |
10- methoxy-leonurine (IC50= 91.8 ±2.9% Tyr inhibition at 100 μΜ, competitive inhibition (Ki= 1.6±0.7 μΜ) Leonurine (IC50= 85.6±1.8% Tyr inhibition at 100 μΜ, competitive inhibition, Ki=11.4±1.1 μΜ) syringic acid (IC50= 11.6±0.1% Tyr inhibition at 100 μΜ) isouercitrin (IC50= 1.8±5.9% Tyr inhibition at 100 μΜ) leonurusoide E (IC50= 8.3±0.6% Tyr inhibition at 100 μΜ) |
148,149 |
Grapes |
Wine production |
Caftaric acid (IC50= 30 μΜ) Chlorogenic acid (IC50= 42 μΜ) Caffeic acid (IC50= 65 μΜ) |
150 |
Wulfenia Carinthiaca s.L. (National flower of Carinthia) (Plantaginaceae) |
Ornamental plant, cosmetic agent |
Aerial part methanolic extract (40% mushroom Tyr inhibition at 500 μg/ml) Methanolic extract isolated compounds: Iridoid glucosides: plantmamajoside (IC50= 0.11±3.61% mushroom Tyr inhibition at 500 μΜ), globularicisin (cis-globularin, (4.20±6.06% mushroom Tyr inhibition at 500 μΜ) 2΄-O-Acetylplantamajoside (IC50= 33.07±1.00 % mushroom Tyr inhibition at 500 μΜ), globularin (79.59±1.62 % mushroom Tyr inhibition at 500 μΜ, IC50= 41.94 μΜ) Phenylethanoid glucosides: 2΄,6΄΄-O-Diacetylplantamajoside (IC50= 29.76±4.24 % mushroom Tyr inhibition at 500 μΜ) 2΄-O-Acetylisoplantamajoside (IC50= 13.50±3.10 % mushroom Tyr inhibition at 500 μΜ) baldaccioside (IC50= 23.01±3.16 % mushroom Tyr inhibition at 500 μΜ), isoscrophularoside (IC50= 48.49±2.08% mushroom Tyr inhibition at 500 μΜ) 2΄,6΄΄-O-diacetylisoplantamajoside (IC50= 26.14±3.18% mushroom Tyr inhibition at 500 μΜ ) |
151 |
Neolentinus lepideus (Fr.) (Redhead and Ginns) (lentinus lepideus (Fr.) (Gloeophyllaceae) |
Antimicrobial properties, cosmetic agents against melanoma, food intake (for edible mushrooms) |
Culture filtrate extracts (72% Tyr inhibition at 1000 μg/ml) Isolated compounds: 1, 3-dihydroisobenzofuran-4,5,7-triol (IC50= 173 μg/ml, competitive inhibition) 5-methoxy-1,3-dihydroisobenzofuran-4,7-diol (IC50= 263 μg/ml, competitive inhibition) |
152 |
Asplenium trichomanes (Aspleniaceae) |
Antitumour, antioxidant and antidiabetic properties |
Aerial parts methanolic extract 4-ethylphenyl-6-O-96-deoxy-α-L-mannopyranosyl)-β-D-glucopyranoside (IC50≥600 μΜ) |
153 |
Scutellaria altissima (Lamiaceae) |
Haemostatic, tonic, wound healing properties, food and beverage agent |
Aerial parts methanolic extract Globularin (IC50=41.91 μΜ) |
153 |
Pinus uncinata subsp. Uncinata (Pinaceae) |
Antiseptic, astringent, diuretic, antispasmotic properties |
Methanolic extract Benzoic acid (IC50≥551.53 μΜ) Roseoside (IC50≥1200 μΜ) Dihydrovomifoliol-O-β-D-glucopyranoside (IC50≥1200 μΜ) |
153 |
Puearariae Lobatae Radix |
Anti-diabetixc, anti-fever, anti-diarrheal aget, skin-whitening |
Puerarin (IC50=0.537 mg/ml, monophenolase activity, mixed-type inhibitor/ diphenolase activity: (Ka)- 1.45 mg/ml, mixed-type activation mechanism) |
154-156 |
Pueraria thumbergiana (Kudzu) (Leguminosae) |
Anti-inflammatory, anti-diabetic, anti-cardiovascular, anti-liver steatosis, anti-melanogenic, antipyretic, analgesic, muscle relaxant agent |
Aerial part (potent mushroom tyrosinase inhibition) Plant extracts (potent cellular tyrosinase inhibition in B16F10 cells, after stimulation with α-MSH) |
154-157 |
Pueraria lobate Ohwi |
Anti-inflammatory, antioxidant, anti-cardiovascular, antidiabetic agent etc |
Purarin (45%-76% Tyr inhibition at a range of 0.5-8.0 mg/ml, IC50= 1.23 mmol/L) |
154-157 |
Vigna angularis |
Hepatoprotective, anticancer, anti-inflammatory, antioxidant agent, food agent |
Seeds extracted condensed tannins: (IC50=130.0≥0.5 μg/ml, monophenolase inhibition, IC50=35.10±2.0 μg/ml, diphenolase inhibition, mixed-type reversible mushroom tyrosinase inhibition) |
158 |
Clausena lansium |
Antidiabetic, anticancer and antioxidant properties |
Plants extracted condensed tannins (IC50=23.6±0.3 μg/ml, monophenolase inhibition) |
134,159 |
Haworth |
Antimicrobial, antioxidant properties |
Fruit stone extracted condensed tannins (IC50=37.00 ±05 μg/ml, monophenolase inhibition) |
160 |
Avogado |
Antioxidant and antifungal properties |
Fruit stone extracted condensed tannins (IC50=40.00±1.2 μg/ml, monophenolase inhibition) |
160 |
Cudrania tricuspidata |
Treatment against digestive apparatus tumor, anti-inflammatory, antifungal, anti-lipid peroxidative, α-glucosidase, antioxidative and cytotoxic properties |
(2S,3S)-2,3-trans-dihydromorin-7-O-β-D-glucoside (ΙC50= 93.17±1.55 μΜ) taxifolin- 7-O-β-D-glucopyranoside (IC50> 200 μΜ) protocatechuic acid (IC50> 500 μΜ) sphaerobioside (IC50> 150 μΜ) orobol-8-C-glucoside (IC50> 200 μΜ) dihydrokaempferol-7-O-β-D-glucoside (IC50> 200 μΜ) taxifolin (IC50> 300 μΜ) trans-dihydromorin (IC50=21.54±0.84 μΜ) oxyresveratrol (IC50=2.85±0.26 μΜ) dihydrokaempferol (IC50> 100 μΜ) taxifolin 7-methyl ether (IC50> 300 μΜ) steppogenin (IC50=2.52±0.66 μΜ) quercetin (IC50=54.58±0.89 μΜ) orobol (IC50> 300 μΜ) naringenin (IC50> 500 μΜ) genistein (IC50> 300 μΜ) santal (IC50> 300 μΜ) glycyrrhisoflavone (IC50> 200 μΜ) wighteone (IC50> 100 μΜ) 6,8-diprenylorobol (IC50> 100 μΜ) 1,5-dihydroxy-3,6-dimethoxy-xanthen-9-one (IC50> 300 μΜ) cudraxanthone H (IC50≥ 200 μΜ) alpinumisoflavone (IC50> 200 μΜ) 8-(γ,γ-dimethylallyl)wighteone (IC50> 200 μΜ) dulxanthone-B (IC50> 200 μΜ) cyclomorusin (IC50> 200 μΜ) 5-methoxy-4,5-diphenyl-2(5H)-furanone (IC50> 300 μΜ) cycloaltilisin-7 (IC50> 200 μΜ) |
161-163 |
Green tea |
(EGCG), (-) epigallocatechin (EGC). (-)-epicatechin (EC), (+)-catechin (C ), caffeine (CAF) |
(-)-epicatechin 3-O-gallate (ECG) (IC50= 34.58 μΜ) (-)-gallocatechin 3-O-gallate (GCG), (IC50= 17.34 μΜ, competitive inhibition) (-)epigallocatechin 3-O-gallate (EGCG) (IC50=34.10 μΜ) |
164 |
Dillenia indica |
|
Triterpenoid |
121 |
Glycyrrhiza species (Leguminosae)-Glycyrrhiza glabra |
Skin-whitening agent |
Glabridin (potentt tyrosinase inhibition) Glabrene (potent tyrosinase inhibition) |
165 |
Glycyrrhiza species (Leguminosae)-Glycyrrhiza uralensis |
Skin-whitening agent |
Ethyl acetate fraction from methanolic extract: (Flavone) Licoisoflavone A (I50> 100 μg/mL) Coumarin (Glycycoumarin) (IC50> 100 μg/mL) Flavanone (3΄-(γ, γ΄- dimethylallyl)-kievitone (IC50> 100 μg/mL) Isoflavone (glycyrrhisoflavone) ic50=46.2±0.60 μg/mL, Anti-melanogenic activity on B16F10 melanoma cells (IC50= 63.7±6.8% at a concentration of 5 μg/mL) Flavanone: Glyasperin C-3 (IC50=0.13 ±0.01 μg/mL) Flavanone: Glabridine C-5 (IC50=0.25 μg/mL)
|
|
Table S6: Studied natural secondary metabolites for their inhibitory properties towards Tyrosinase.
Inhibitor |
Chemical Family |
Source |
IC50 |
Binding Properties |
Ref. |
Kaempferol |
Flavonoids |
|
|
|
119,166 |
Quercetin |
Flavonoids |
|
|
|
119,167 |
Kuarinone |
Flavonoids |
|
|
|
168 |
Kushnol F |
Flavonoids |
|
|
|
168 |
Luteolin 4΄-O-glucoside |
Flavonoid glucosides |
|
|
|
140 |
Luteolin 7-O-glucoside |
Flavonoid glucosides |
|
|
|
140 |
Morin |
Flavonoid |
|
|
|
169 |
Catechin |
Flavonoid |
|
|
|
170 |
Rhamnetin |
Flavonoid |
|
|
30.6% murine Tyr inhibition on B16 cells at 5 μΜ, 63.3% murine Tyr inhibition on B16 cells at 20 μΜ and 75.5% murine Tyr inhibition on B16 cells at 40 μΜ. |
171 |
Gallic acid |
Phenolic acids |
|
|
|
164 |
1,2,3,4,6-Penta-O-galloyl-d-glucose (PGG) |
Gallic acid derivative |
Galla rhois |
|
Strong inhibition |
168,170,172 |
(S)-N-trans-Feruloyloctopamine |
Phenolic acid derivatives |
Garlic skin |
|
IC50=5.3±1.8 μΜ |
173 |
(+) catechin |
Tannins |
Green tea |
|
IC50=57.12 μΜ |
170 |
(-)-epicatechin gallate (ECG) |
Tannins |
Green tea |
|
IC50=22.63 μΜ |
170 |
(-)-epigallocatechin-3-O-gallate (EGCG) |
Tannins |
Green tea |
|
IC50=142.40 μΜ |
170 |
β-arbutin |
(hydroquinone β-D- glucopyranoside) |
|
|
Potent Tyr inhibition, used as cosmetic agent |
174 |
Deoxyarbutin |
Synthetic hydroquinone derivative |
|
|
Potent Tyr inhibition, used as cosmetic agent |
134,175,176 |
Mequinol |
Hydroquinone monomethyl ether |
|
|
Potent Tyr inhibition, used as cosmetic agent |
177 |
Licochalcone A |
Chalcone |
Glycyrrhiza species |
|
Pontent mushroom Tyr inhibitor |
175,178 |
Kuraridin |
Chalcone |
|
|
|
179 |
Kuraridinol |
Chalcone |
|
|
|
179,180 |
2,4, 2΄, 4΄-tetrahydroxy-3-(3-methyl-n-butenyl) chalcone |
Chalcone |
|
|
Potent Tyr inhibition |
95,134,175,178 |
Resveratrol |
Stilbenes |
|
|
Strong Tyr inhibition (32 times higher Tyr inhibition than standard control kojic acid) |
181,182 |
Trans-cinnamaldehyde |
Aldehyde derivatives |
|
|
|
168,183 |
(2E )-alkenals |
Aldehyde derivatives |
|
|
|
168,183,184 |
2-hydroxy-4-methoxybenzaldehyde |
Aldehyde derivatives |
|
|
|
185,186 |
Anisaldehyde |
Aldehyde derivatives |
|
|
|
186,187 |
Cuminaldehyde |
Aldehyde derivatives |
|
|
|
188,189 |
Cumic acid |
Aldehyde derivatives |
|
|
|
188 |
3,4-dihydroxycinnamic acid |
Cinnamic acid derivatives |
|
|
|
187 |
4-hydroxy-3-methoxycinnamic acid |
Cinnamic acid derivatives |
|
|
|
187 |
Glycolic acid |
|
Grapes, sugarcane, beets |
|
IC50=83.00±14.00 μΜ 98.5% tyrosinase inhibition at a concentration of 200 μΜ, mixed-type reversible inhibition |
190 191 |
|
|
|
|
|
|
Table S7: Illustration of the results given with the two softwares (NC-DB and Maestro) a) Elastase with caffeic acid, b) Hyaluronidase with quercetin and c) Tyrosinase with betulinic acid
a) Elastase-Caffeic acid
NC-DB RESULTS |
MAESTRO RESULTS |
||||
Hydrophobic Interactions |
Hydrogen Bonds |
pi-Stacking |
Hydrophobic Interactions |
Hydrogen Bonds |
pi-Stacking |
PHE192 |
PHE41 |
PHE192 |
PHE192 |
VAL41 |
HIS57 |
|
GLY193 |
|
|
GLY193 |
|
|
VAL216 |
|
|
LEU216 |
|
b) Hyaluronidase-Quercetin
NC-DB RESULTS |
MAESTRO RESULTS |
||||
Hydrophobic Interactions |
Hydrogen Bonds |
pi-Stacking |
Hydrophobic Interactions |
Hydrogen Bonds |
pi-Stacking |
GLU131 |
GLU131 |
TYR202 |
TYR202 |
GLU131 |
TYR247 |
TYR202 |
TYR202 |
TYR261 |
TYR247 |
ASP292 |
ARG134 |
TYR247 |
GLY203 |
ARG265 |
|
ARG134 |
ARG265 |
|
TYR210 |
ASP292 |
|
|
|
|
SER245 |
|
|
|
|
c) Tyrosinase-Betulinic acid
NC-DB RESULTS |
MAESTRO RESULTS |
||||||
Metal Complexes |
Metal Complexes |
Hydrophobic Interactions |
Hydrogen Bonds |
Metal Complexes |
Metal Complexes |
Hydrophobic Interactions |
Hydrogen Bonds |
HIS42 |
HIS204 |
PHE197 |
VAL218 |
42 HIS |
204 HIS |
VAL217 |
ASN205 |
HIS60 |
HIS208 |
HIS231 |
PRO201 |
60 HIS |
208 HIS |
PHE197 |
|
|
|
|
ASN205 |
|
231 HIS |
ASN205 |
|
|
|
|
VAL217 |
|
|
VAL218 |
|
|
|
|
VAL218 |
|
|
|
|
|
|
|
PRO219 |
|
|
|
|
Table S8: Illustration of the results given with the two softwares (NC-DB and Maestro) for the compound Auricoulasin35, potent Elastase inhibitor.
NC-DB RESULTS |
MAESTRO RESULTS |
||||
Hydrophobic Interactions |
Hydrogen Bonds |
pi-Stacking |
Hydrophobic Interactions |
Hydrogen Bonds |
pi-Stacking |
LEU143 |
PHE41 |
HIS57 |
143 LEU |
41 PHE |
57 HIS |
PHE192 |
SER195 |
|
192 PHE |
195 SER |
|
|
SER214 |
|
41 PHE |
214 SER |
|
References.
(1) Thring, T. S.; Hili, P.; Naughton, D. P. Anti-Collagenase, Anti-Elastase and Anti-Oxidant Activities of Extracts from 21 Plants. BMC Complement. Altern. Med. 2009, 9 (1), 27. https://doi.org/10.1186/1472-6882-9-27.
(2) Maity, N.; Nema, N. K.; Abedy, M. K.; Sarkar, B. K.; Mukherjee, P. K. Exploring Tagetes Erecta Linn Flower for the Elastase, Hyaluronidase and MMP-1 Inhibitory Activity. J. Ethnopharmacol. 2011, 137 (3), 1300-1305. https://doi.org/10.1016/j.jep.2011.07.064.
(3) Xu, G.-H.; Kim, Y.-H.; Choo, S.-J.; Ryoo, I.-J.; Yoo, J.-K.; Ahn, J.-S.; Yoo, I.-D. Chemical Constituents from the Leaves of Ilex Paraguariensis Inhibit Human Neutrophil Elastase. Arch. Pharm. Res. 2009, 32 (9), 1215-1220. https://doi.org/10.1007/s12272-009-1905-7.
(4) Nema, N. K.; Maity, N.; Sarkar, B.; Mukherjee, P. K. Cucumis Sativus Fruit-Potential Antioxidant, Anti-Hyaluronidase, and Anti-Elastase Agent. Arch. Dermatol. Res. 2011, 303 (4), 247-252. https://doi.org/10.1007/s00403-010-1103-y.
(5) Löser, B.; Kruse, S. O.; Melzig, M. F.; Nahrstedt, A. Inhibition of Neutrophil Elastase Activity by Cinnamic Acid Derivatives from Cimicifuga Racemosa. Planta Med. 2000, 66 (8), 751-753. https://doi.org/10.1055/s-2000-9563.
(6) Battinelli, L.; Daniele, C.; Cristiani, M.; Bisignano, G.; Saija, A.; Mazzanti, G. In Vitro Antifungal and Anti-Elastase Activity of Some Aliphatic Aldehydes from Olea Europaea L. Fruit. Phytomedicine 2006, 13 (8), 558-563. https://doi.org/10.1016/j.phymed.2005.09.009.
(7) An, B.-J.; Kwak, J.-H.; Park, J.-M.; Lee, J.-Y.; Park, T.-S.; Lee, J.-T.; Son, J.-H.; Jo, C.; Byun, M.-W. Inhibition of Enzyme Activities and the Antiwrinkle Effect of Polyphenol Isolated from the Persimmon Leaf (Diospyros Kaki Folium) on Human Skin. Dermatologic Surg. 2006, 31, 848-855. https://doi.org/10.1111/j.1524-4725.2005.31730.
(8) Kozachok, S.; Pecio, Ł.; Orhan, I. E.; Deniz, F. S. S.; Marchyshyn, S.; Oleszek, W. Reinvestigation of Herniaria Glabra L. Saponins and Their Biological Activity. Phytochemistry 2020, 169 (September 2019), 112162. https://doi.org/10.1016/j.phytochem.2019.112162.
(9) Moon, J.-Y.; Yim, E.-Y.; Song, G.; Lee, N. H.; Hyun, C.-G. Screening of Elastase and Tyrosinase Inhibitory Activity from Jeju Island Plants. EurAsian J. Biosci. 2010, 53 (March), 41-53. https://doi.org/10.5053/ejobios.2010.4.0.6.
(10) Nema, N. K.; Maity, N.; Sarkar, B. K.; Mukherjee, P. K. Matrix Metalloproteinase, Hyaluronidase and Elastase Inhibitory Potential of Standardized Extract of Centella Asiatica. Pharm. Biol. 2013, 51 (9), 1182-1187. https://doi.org/10.3109/13880209.2013.782505.
(11) Mukherjee, P.; Maity, N.; Nema, N.; Sarkar, B. Standardized Clitoria Ternatea Leaf Extract as Hyaluronidase, Elastase and Matrix-Metalloproteinase-1 Inhibitor. Indian J. Pharmacol. 2012, 44 (5), 584. https://doi.org/10.4103/0253-7613.100381.
(12) Wittenauer, J.; Mäckle, S.; Sußmann, D.; Schweiggert-Weisz, U.; Carle, R. Inhibitory Effects of Polyphenols from Grape Pomace Extract on Collagenase and Elastase Activity. Fitoterapia 2015, 101, 179-187. https://doi.org/10.1016/j.fitote.2015.01.005.
(13) Boje, K.; Lechtenberg, M.; Nahrstedt, A. New and Known Iridoid- and Phenylethanoid Glycosides from Harpagophytum Procumbens and Their in Vitro Inhibition of Human Leukocyte Elastase. Planta Med. 2003, 69 (9), 820-825. https://doi.org/10.1055/s-2003-43225.
(14) Siedle, B.; Hrenn, A.; Merfort, I. Natural Compounds as Inhibitors of Human Neutrophil Elastase. Planta Med. 2007, 73 (5), 401-420. https://doi.org/10.1055/s-2007-967183.
(15) Piwowarski, J. P.; Kiss, A. K.; Kozłowska-Wojciechowska, M. Anti-Hyaluronidase and Anti-Elastase Activity Screening of Tannin-Rich Plant Materials Used in Traditional Polish Medicine for External Treatment of Diseases with Inflammatory Background. J. Ethnopharmacol. 2011, 137 (1), 937-941. https://doi.org/10.1016/j.jep.2011.05.039.
(16) Tan, X. F.; Kim, D. W.; Song, Y. H.; Kim, J. Y.; Yuk, H. J.; Wang, Y.; Curtis-Long, M. J.; Park, K. H. Human Neutrophil Elastase Inhibitory Potential of Flavonoids from Campylotropis Hirtella and Their Kinetics. J. Enzyme Inhib. Med. Chem. 2016, 31, 16-22. https://doi.org/10.3109/14756366.2015.1118683.
(17) Han HY, Wang XH, Wang NL, et al. Lignans Isolated from Campylotropis Hirtella (Franch.) Schindl. Decreased Prostate Specific Antigen and Androgen Receptor Expression in LNCaP Cell. J Agric Food Chem 2008, 56, 6928-35.
(18) Li XP, Xuan BX, Shou QY, S. Z. New Flavonoids from Campylotropis Hirtella with Immunosuppressive Activity. Fitoterapia 2014, 95, 220-8.
(19) Tan, X. F.; Kim, D. W.; Song, Y. H.; Kim, J. Y.; Yuk, H. J.; Wang, Y.; Curtis-Long, M. J.; Park, K. H. Human Neutrophil Elastase Inhibitory Potential of Flavonoids from Campylotropis Hirtella and Their Kinetics. J. Enzyme Inhib. Med. Chem. 2016, 31, 16-22. https://doi.org/10.3109/14756366.2015.1118683.
(20) Shou QY, Fu RZ, Tan Q, S. Z. Geranylated Flavonoids from the Roots of Campylotropis Hirtella and Their Immunosuppressive Activities. J Agric Food Chem 2009, 57, 6712-19.
(21) Pientaweeratch, S.; Panapisal, V.; Tansirikongkol, A. Antioxidant, Anti-Collagenase and Anti-Elastase Activities of Phyllanthus Emblica, Manilkara Zapota and Silymarin: An in Vitro Comparative Study for Anti-Aging Applications. Pharm. Biol. 2016, 54 (9), 1865-1872. https://doi.org/10.3109/13880209.2015.1133658.
(22) Ma J, Luo XD, Protiva P, Yang H, Ma C, Basile MJ, W.; IB, K. E. Bioactive Novel Polyphenols from the Fruit of Manilkara Zapota (Sapodilla). J Nat Prod. 2003, 66, 983- 986.
(23) Khurram, M.; Lawton, L. A.; Edwards, C.; Iriti, M.; Hameed, A.; Khan, M. A.; Khan, F. A.; ur Rahman, S. Rapid Bioassay-Guided Isolation of Antibacterial Clerodane Type Diterpenoid from Dodonaea Viscosa (L.) Jaeq. Int. J. Mol. Sci. 2015, 16 (9), 20290-20307. https://doi.org/10.3390/ijms160920290.
(24) Uddin, Z.; Li, Z.; Song, Y. H.; Kim, J. Y.; Park, K. H. Visconata: A Rare Flavonol Having Long Chain Fatty Acid from Dodonaea Viscosa Which Inhibits Human Neutrophil Elastase (HNE). Tetrahedron Lett. 2017, 58 (25), 2507-2511. https://doi.org/10.1016/j.tetlet.2017.05.059.
(25) Krenn, L.; Wollenweber, E.; Steyrleuthner, K.; Görick, C.; Melzig, M. F. Contribution of Methylated Exudate Flavonoids to the Anti-Inflammatory Activity of Grindelia Robusta. Fitoterapia 2009, 80 (5), 267-269. https://doi.org/10.1016/j.fitote.2009.03.001.
(26) Stahl-Biskup E. Grindelia. In: BlaschekW, Hänsel R, Keller K, R. J.; Rimpler H, Schneider G, E. Hagers Handbuch Der Pharmazeutischen Praxis, 5th Ed. Folgeband 2: Drogen A-K. Berlin. Springer 1998, 812.
(27) Kim, J. Y.; Lee, J. H.; Song, Y. H.; Jeong, W. M.; Tan, X.; Uddin, Z.; Park, K. H. Human Neutrophil Elastase Inhibitory Alkaloids from Chelidonium Majus L. J. Appl. Biol. Chem. 2015, 58 (3), 281-285. https://doi.org/10.3839/jabc.2015.044.
(28) Saleem, M.; Nazir, M.; Hussain, H.; Tousif, M. I.; Elsebai, M. F.; Riaz, N.; Akhtar, N. Natural Phenolics as Inhibitors of the Human Neutrophil Elastase (HNE) Release: An Overview of Natural Anti-Inflammatory Discoveries during Recent Years. Antiinflamm. Antiallergy. Agents Med. Chem. 2018, 17 (2), 70-94. https://doi.org/10.2174/1871523017666180910104946.
(29) Lee, S. M.; Song, Y. H.; Uddin, Z.; Ban, Y. J.; Park, K. H. Prenylated Flavonoids from Epimedium Koreanum Nakai and Their Human Neutrophil Elastase Inhibitory Effects. Rec. Nat. Prod. 2017, 11 (6), 514-520. https://doi.org/10.25135/rnp.66.17.05.090.
(30) H. Ma, X. He, Y. Yang, M. Li, D. H. and Z. J. (2011). The Genus Epimedium: An Ethnopharmacological and Phytochemical Review. J. Ethnopharmacol. 1 2011, 34, 519-541.
(31) Xu, G. H.; Ryoo, I. J.; Kim, Y. H.; Choo, S. J.; Yoo, I. D. Free Radical Scavenging and Antielastase Activities of Flavon Ids from the Fruits of Thuja Orientalis. Arch. Pharm. Res. 2009, 32 (2), 275-282. https://doi.org/10.1007/s12272-009-1233-y.
(32) Sadeer, N. B.; Rocchetti, G.; Senizza, B.; Montesano, D.; Zengin, G.; Uysal, A.; Jeewon, R.; Lucini, L.; Mahomoodally, M. F. Untargeted Metabolomic Profiling, Multivariate Analysis and Biological Evaluation of the True Mangrove (Rhizophora Mucronata Lam.). Antioxidants 2019, 8 (10). https://doi.org/10.3390/antiox8100489.
(33) Zhang, J.; Xu, H. Y.; Wu, Y. J.; Zhang, X.; Zhang, L. Q.; Li, Y. M. Neutrophil Elastase Inhibitory Effects of Pentacyclic Triterpenoids from Eriobotrya Japonica (Loquat Leaves). J. Ethnopharmacol. 2019, 242 (January), 111713. https://doi.org/10.1016/j.jep.2019.01.037.
(34) Cha, D.S., Eun, J.S., Jeon, H. Anti-Inflammatory and Antinociceptive Properties of the Leaves of Eriobotrya Japonica. J. Ethnopharmacol. 2011, 134 (2), 305-312.
(35) Kim, J. Y.; Wang, Y.; Uddin, Z.; Song, Y. H.; Li, Z. P.; Jenis, J.; Park, K. H. Competitive Neutrophil Elastase Inhibitory Isoflavones from the Roots of Flemingia Philippinensis. Bioorg. Chem. 2018, 78, 249-257. https://doi.org/10.1016/j.bioorg.2018.03.024.
(36) M. Chen, S.Q. Luo, J. H. C. Studies on the Chemical Constituents of Flemingia Philippinensis. Acta Pharm. Sin. 1991, 26, 42-48.
(37) H. Li, M. Yang, J. Miao, X. M. Simultaneous Chromatographic Fingerprinting and Quantitative Analysis of Flemingia Philippinensis by LC-DAD. Chromatographia 2009, 70, 447-454.
(38) Melzig, M. F.; Henke, K. Inhibition of Thrombin Activity by Selected Natural Products in Comparison to Neutrophil Elastase. Planta Med. 2005, 71 (8), 787-789. https://doi.org/10.1055/s-2005-871253.
(39) Xing, X.; Yang, X.; Cao, Y. Study of Ellagic Acid as a Natural Elastase Inhibitor by Spectroscopic Methods. J. Appl. Spectrosc. 2016, 83 (1), 149-155. https://doi.org/10.1007/s10812-016-0259-4.
(40) Steinbrecher, T.; Case, D. A.; Labahn, A. A Multistep Approach to Structure-Based Drug Design: Studying Ligand Binding at the Human Neutrophil Elastase. J. Med. Chem. 2006, 49 (6), 1837-1844. https://doi.org/10.1021/jm0505720.
(41) Filip, R.; López, P.; Giberti, G.; Coussio, J.; Ferraro, G. Phenolic Compounds in Seven South American Ilex Species. Fitoterapia 2001, 72 (7), 774-778.
(42) Tatefuji, T.; Izumi, N.; Ohta, T.; Arai, S.; Ikeda, M.; Kurimoto, M. Isolation and Identification of Compounds from Brazilian Propolis Which Enhance Macrophage Spreading and Mobility. Biol. Pharm. Bull. 1996, 19 (7), 966-970.
(43) Góngora, L.; Giner, R. M.; Máñez, S.; Recio, M. del C.; Schinella, G.; Ríos, J. L. Effects of Caffeoyl Conjugates of Isoprenyl-Hydroquinone Glucoside and Quinic Acid on Leukocyte Function. Life Sci. 2002, 71 (25), 2995-3004.
(44) Choi, S. Z.; Lee, S. O.; Choi, S. U.; Lee, K. R. A New Sesquiterpene Hydroperoxide from the Aerial Parts of Aster Oharai. Arch. Pharm. Res. 2003, 26 (7), 521-525.
(45) Hrenn, A.; Steinbrecher, T.; Labahn, A.; Schwager, J.; Schempp, C. M.; Merfort, I. Plant Phenolics Inhibit Neutrophil Elastase. Planta Med. 2006, 72 (12), 1127-1131. https://doi.org/10.1055/s-2006-946700.
(46) Sartor, L.; Pezzato, E.; Garbisa, S. (-)Epigallocatechin-3-Gallate Inhibits Leukocyte Elastase: Potential of the Phyto-Factor in Hindering Inflammation, Emphysema, and Invasion. J. Leukoc. Biol. 2002, 71 (1), 73-79.
(47) Leu, S. J.; Lin, Y. P.; Lin, R. D.; Wen, C. L.; Cheng, K. T.; Hsu, F. L.; Lee, M. H. Phenolic Constituents of Malus Doumeri Var. Formosana in the Field of Skin Care. Biol. Pharm. Bull. 2006, 29 (4), 740-745.
(48) R.K., S.; a., R.; M., M.; V.K., D.; J., D.; a.K., J. Review on Skin Aging and Compilation of Scientific Validated Medicinal Plants, Prominence to Flourish a Better Research Reconnoiters in Herbal Cosmetic. Research Journal of Medicinal Plant. 2013, pp 1-22. https://doi.org/10.3923/rjmp.2013.1.22.
(49) Kacem, R.; Meraihi, Z. EŜects of Essential Oil Extracted from Nigella Sativa (L.) Seeds and Its Main Components on Human Neutrophil Elastase Activity. Yakugaku Zasshi 2006, 126 (4), 301-305. https://doi.org/10.1248/yakushi.126.301.
(50) Ying, Q. L.; Rinehart, a R.; Simon, S. R.; Cheronis, J. C. Inhibition of Human Leucocyte Elastase by Ursolic Acid. Evidence for a Binding Site for Pentacyclic Triterpenes. Biochem. J. 1991, 277, 521-526. https://doi.org//pmc/articles/PMC1151264/.
(51) Feng, L.; Liu, X.; Zhu, W.; Guo, F.; Wu, Y.; Wang, R.; Chen, K.; Huang, C.; Li, Y. Inhibition of Human Neutrophil Elastase by Pentacyclic Triterpenes. PLoS One 2013, 8 (12), 1-11. https://doi.org/10.1371/journal.pone.0082794.
(52) Siedle, B.; Cisielski, S.; Murillo, R.; Lo, B.; Castro, V.; Klaas, C. A.; Hucke, O.; Labahn, A.; Melzig, M. F.; Merfort, I.; Rica, C.; Quimica, E. De; Rica, U. D. C.; Jose, S. Sesquiterpene Lactones as Inhibitors of Human Neutrophil Elastase. Bioorg. Med. Chem. 2002, 10, 2855-2861.
(53) Selenge, E.; Odontuya, G.; Murata, T.; Sasaki, K.; Kobayashi, K.; Batkhuu, J.; Yoshizaki, F. Phytochemical Constituents of Mongolian Traditional Medicinal Plants, Chamaerhodos Erecta and C. Altaica, and Its Constituents Prevents the Extracellular Matrix Degradation Factors. J. Nat. Med. 2013, 67 (4), 867-875. https://doi.org/10.1007/s11418-013-0748-1.
(54) Selenge, E.; Murata, T.; Tanaka, S.; Sasaki, K.; Batkhuu, J.; Yoshizaki, F. Monoterpene Glycosides, Phenylpropanoids, and Acacetin Glycosides from Dracocephalum Foetidum. Phytochemistry 2014, 101, 91-100. https://doi.org/10.1016/j.phytochem.2014.02.007.
(55) Michel, P.; Owczarek, A.; Matczak, M.; Kosno, M.; Szymański, P.; Mikiciuk-Olasik, E.; Kilanowicz, A.; Wesołowski, W.; Olszewska, M. A. Metabolite Profiling of Eastern Teaberry (Gaultheria Procumbens L.) Lipophilic Leaf Extracts with Hyaluronidase and Lipoxygenase Inhibitory Activity. Molecules 2017, 22 (3), 1-16. https://doi.org/10.3390/molecules22030412.
(56) Liu, W.-R.; Qiao, W.-L.; Liu, Z.-Z.; Wang, X.-H.; Jiang, R.; Li, S.-Y.; Shi, R.-B.; She, G.-M. Gaultheria: Phytochemical and Pharmacological Characteristics. Molecules 2013, 18 (10), 12071-12108. https://doi.org/10.3390/molecules181012071.
(57) Nikolic, M.; Markovic, T.; Mojovic, M.; Pejin, B.; Savic, A. P.; T.; Markovic, D.; Stevic, T.; Sokovic, M. Chemical Composition and Biological Activity of Gaultheria Procumbens L. Essential Oil. Ind. Crop. Prod. 2013, 49, 561-567.
(58) Scotti, L.; Kumar Singla, R.; Mitsugu Ishiki, H.; Jaime B. Mendonca, F.; Sobral da Silva, M.; Maria Barbosa Filho, J.; Tullius Scotti, M. Recent Advancement in Natural Hyaluronidase Inhibitors. Curr. Top. Med. Chem. 2016, 16 (23), 2525-2531. https://doi.org/10.2174/1568026616666160414123857.
(59) Citalingam, K.; Zareen, S.; Shaari, K.; Ahmad, S. Effects of Payena Dasyphylla (Miq.) on Hyaluronidase Enzyme Activity and Metalloproteinases Protein Expressions in Interleukin-1β Stimulated Human Chondrocytes Cells. BMC Complement. Altern. Med. 2013, 13 (1), 213. https://doi.org/10.1186/1472-6882-13-213.
(60) Ippoushi, K.; Yamaguchi, Y.; Itou, H.; Azuma, K.; Higashio, H. Evaluation of Inhibitory Effects of Vegetables and Herbs on Hyaluronidase and Identification of Rosmarinic Acid as a Hyaluronidase Inhibitor in Lemon Balm (Melissa Officinalis L.). Food Sci. Technol. Res. 2000, 6 (1), 74-77.
(61) Lee, K. K.; Cho, J. J.; Park, E. J.; Choi, J. D. Anti-Elastase and Anti-Hyaluronidase of Phenolic Substance from Areca Catechu as a New Anti-Ageing Agent. Int. J. Cosmet. Sci. 2001, 23 (6), 341-346. https://doi.org/10.1046/j.0412-5463.2001.00102.x.
(62) Sendker, J.; Böker, I.; Lengers, I.; Brandt, S.; Jose, J.; Stark, T.; Hofmann, T.; Fink, C.; Abdel-Aziz, H.; Hensel, A. Phytochemical Characterization of Low Molecular Weight Constituents from Marshmallow Roots (Althaea Officinalis) and Inhibiting Effects of the Aqueous Extract on Human Hyaluronidase-1. J. Nat. Prod. 2017, 80 (2), 290-297. https://doi.org/10.1021/acs.jnatprod.6b00670.
(63) González-Peña, D.; Colina-Coca, C.; Char, C. D.; Cano, M. P.; De Ancos, B.; Sánchez-Moreno, C. Hyaluronidase Inhibiting Activity and Radical Scavenging Potential of Flavonols in Processed Onion. J. Agric. Food Chem. 2013, 61 (20), 4862-4872. https://doi.org/10.1021/jf3054356.
(64) Orlando, Z.; Lengers, I.; Melzig, M. F.; Buschauer, A.; Hensel, A.; Jose, J. Autodisplay of Human Hyaluronidase Hyal-1 on Escherichia Coli and Identification of Plant-Derived Enzyme Inhibitors. Molecules 2015, 20 (9), 15449-15468. https://doi.org/10.3390/molecules200915449.
(65) Załuski, D.; Olech, M.; Kuźniewski, R.; Verpoorte, R.; Nowak, R.; Smolarz, H. D. LC-ESI-MS/MS Profiling of Phenolics from Eleutherococcus Spp. Inflorescences, Structure-Activity Relationship as Antioxidants, Inhibitors of Hyaluronidase and Acetylcholinesterase. Saudi Pharm. J. 2017, 25 (5), 734-743. https://doi.org/10.1016/j.jsps.2016.11.002.
(66) Liu, M.; Yin, H.; Dong, J.; Xiao, L.; Liu, G.; Qian, Z.; Miao, J. Inhibition and Interaction with Hyaluronidase by Compounds from Hop (Humulus Lupulus l) Flowers. Asian J. Chem. 2013, 25 (18), 10262-10266. https://doi.org/10.14233/ajchem.2013.15260.
(67) Addotey, J. N.; Lengers, I.; Jose, J.; Gampe, N.; Béni, S.; Petereit, F.; Hensel, A. Isoflavonoids with Inhibiting Effects on Human Hyaluronidase-1 and Norneolignan Clitorienolactone B from Ononis Spinosa L. Root Extract. Fitoterapia 2018, 130 (August), 169-174. https://doi.org/10.1016/j.fitote.2018.08.013.
(68) Muhit, M. A.; Izumikawa, M.; Umehara, K.; Noguchi, H. Phenolic Constituents of the Bangladeshi Medicinal Plant Pothos Scandens and Their Anti-Estrogenic, Hyaluronidase Inhibition, and Histamine Release Inhibitory Activities. Phytochemistry 2016, 121, 30-37. https://doi.org/10.1016/j.phytochem.2015.10.009.
(69) Addotey, J. N.; Lengers, I.; Jose, J.; Hensel, A. Hyal-1 Inhibitors from the Leaves of Phyllanthus Muellerianus (Kuntze) Excell. J. Ethnopharmacol. 2019, 236 (November 2018), 326-335. https://doi.org/10.1016/j.jep.2019.03.022.
(70) Brusotti, G., Cesari, I., Frassà, G., Grisoli, P., Dacarro, C., Caccialanza, G. Antimicrobial Properties of Stem Bark Extracts from Phyllanthus Muellerianus (Kuntze) Excell. J. Ethnopharmacol. 2011, 135 (3), 797-800.
(71) Murata, T.; Miyase, T.; Yoshizaki, F. Hyaluronidase Inhibitors from Keiskea Japonica. Chem. Pharm. Bull. 2012, 60 (1), 121-128. https://doi.org/10.1248/cpb.60.121.
(72) Murata, T.; Suzuki, A.; Mafune, N.; Sato, E.; Miyase, T.; Yoshizaki, F. Triterpene Saponins from Clethra Barbinervis and Their Hyaluronidase Inhibitory Activities. Chem. Pharm. Bull. 2013, 61 (2), 134-143. https://doi.org/10.1248/cpb.c12-00566.
(73) Perera, H. D. S. M.; Samarasekera, J. K. R. R.; Handunnetti, S. M.; Weerasena, O. V. D. S. J.; Weeratunga, H. D.; Jabeen, A.; Choudhary, M. I. In Vitro Pro-Inflammatory Enzyme Inhibition and Anti-Oxidant Potential of Selected Sri Lankan Medicinal Plants. BMC Complement. Altern. Med. 2018, 18 (1), 1-15. https://doi.org/10.1186/s12906-018-2335-1.
(74) Abdullah, N. H.; Thomas, N. F.; Sivasothy, Y.; Lee, V. S.; Liew, S. Y.; Noorbatcha, I. A.; Awang, K. Hyaluronidase Inhibitory Activity of Pentacylic Triterpenoids from Prismatomeris Tetrandra (Roxb.) K. Schum: Isolation, Synthesis and QSAR Study. Int. J. Mol. Sci. 2016, 17 (2). https://doi.org/10.3390/ijms17020143.
(75) Nishida, Y.; Sugahara, S.; Wada, K.; Toyohisa, D.; Tanaka, T.; Ono, M.; Yasuda, S. Inhibitory Effects of the Ethyl Acetate Extract from Bulbs of Scilla Scilloides on Lipoxygenase and Hyaluronidase Activities. Pharm. Biol. 2014, 52 (10), 1351-1357. https://doi.org/10.3109/13880209.2014.891140.
(76) Iwanaga, A.; Kusano, G.; Warashina, T.; Miyase, T. Hyaluronidase Inhibitors from "Cimicifugae Rhizoma" (a Mixture of the Rhizomes of Cimicifuga Dahurica and C. Heracleifolia). J. Nat. Prod. 2010, 73 (4), 573-578. https://doi.org/10.1021/np900675n.
(77) Sakai, S.; Ochiai, H.; Nakajima, K.; Terasawa, K. Inhibitory Effect of Ferulic Acid on Macrophage Inflammatory Protein-2 Production in a Murine Macrophage Cell Line, RAW264.7. Cytokine 1997, 9 (4), 242-248. https://doi.org/10.1006/cyto.1996.0160.
(78) Mukherjee, P. K.; Kumar, V.; Kumar, N. S.; Heinrich, M. The Ayurvedic Medicine Clitoria Ternatea--from Traditional Use to Scientific Assessment. J. Ethnopharmacol. 2008, 120 (3), 291-301. https://doi.org/10.1016/j.jep.2008.09.009.
(79) Maity, N.; Nema, N. K.; Sarkar, B. K.; Mukherjee, P. K. Standardized Clitoria Ternatea Leaf Extract as Hyaluronidase, Elastase and Matrix-Metalloproteinase-1 Inhibitor. Indian J. Pharmacol. 2012, 44 (5), 584-587. https://doi.org/10.4103/0253-7613.100381.
(80) Murata, T.; Watahiki, M.; Tanaka, Y.; Miyase, T.; Yoshizaki, F. Hyaluronidase Inhibitors from Takuran, Lycopus Lucidus. Chem. Pharm. Bull. 2010, 58 (3), 394-397. https://doi.org/10.1248/cpb.58.394.
(81) Murata, T.; Miyase, T.; Yoshizaki, F. Hyaluronidase Inhibitory Rosmarinic Acid Derivatives from Meehania Urticifolia. Chem. Pharm. Bull. 2011, 59 (1), 88-95. https://doi.org/10.1248/cpb.59.88.
(82) Patil, S.; Bhadane, B.; Shirsath, L.; Patil, R.; Chaudhari, B. Steroidal Fraction of Carissa Carandas L. Inhibits Microbial Hyaluronidase Activity by Mixed Inhibition Mechanism. Prep. Biochem. Biotechnol. 2019, 49 (3), 298-306. https://doi.org/10.1080/10826068.2018.1541811.
(83) Sumantran, V. N.; Kulkarni, A. A.; Harsulkar, A.; Wele, A.; Koppikar, S. J.; Chandwaskar, R.; Gaire, V.; Dalvi, M.; Wagh, U. V. Hyaluronidase and Collagenase Inhibitory Activities of the Herbal Formulation Triphala Guggulu. J. Biosci. 2007, 32 (4), 755-761.
(84) Załuski, D.; Cieśla, Ł.; Janeczko, Z. Chapter 7 - The Structure-Activity Relationships of Plant Secondary Metabolites with Antimicrobial, Free Radical Scavenging and Inhibitory Activity toward Selected Enzymes; 2015; Vol. 45. https://doi.org/10.1016/B978-0-444-63473-3.00007-1.
(85) Fayad, S.; Nehmé, R.; Tannoury, M.; Lesellier, E.; Pichon, C.; Morin, P. Macroalga Padina Pavonica Water Extracts Obtained by Pressurized Liquid Extraction and Microwave-Assisted Extraction Inhibit Hyaluronidase Activity as Shown by Capillary Electrophoresis. J. Chromatogr. A 2017, 1497, 19-27. https://doi.org/10.1016/j.chroma.2017.03.033.
(86) Murata, T.; Sasaki, K.; Sato, K.; Yoshizaki, F.; Yamada, H.; Mutoh, H.; Umehara, K.; Miyase, T.; Warashina, T.; Aoshima, H.; Tabata, H.; Matsubara, K. Matrix Metalloproteinase-2 Inhibitors from Clinopodium Chinense Var. Parviflorum. J. Nat. Prod. 2009, 72 (8), 1379-1384. https://doi.org/10.1021/np800781t.
(87) Nagai, M.; Noguchi, M.; Iizuka, T.; Otani, K.; Kamata, K. Vasodilator Effects of Des(Alpha-Carboxy-3,4-Dihydroxyphenethyl)Lithospermic Acid (8-Epiblechnic Acid), a Derivative of Lithospermic Acids in Salviae Miltiorrhizae Radix. Biol. Pharm. Bull. 1996, 19 (2), 228-232.
(88) P. K. Agrawal and R. P. Rastogi. "13C NMR Spectroscopy of Flavonoids,." Heterocycles 1981, 16, 2181-2236.
(89) Aoshima, H.; Miyase, T.; Warashina, T. Caffeic Acid Oligomers with Hyaluronidase Inhibitory Activity from Clinopodium Gracile. Chem. Pharm. Bull. 2012, 60 (4), 499-507. https://doi.org/10.1248/cpb.60.499.
(90) Pujiarti, R.; Ohtani, Y. and Ichura, H. Antioxidant, Anti-Hyaluronidase and Antifungal Activities of Melaleuca Leucadendron Linn. Leaf Oils. J. Wood Sci. 2012, 58, 429-436.
(91) Moon, S.; Kim, K.; Lee, N.; Han, Y.; Nah, S.; Cho, S. G.; Park, Y.; Paik, H. Inhibitory Effects of Naringenin and Its Novel Derivatives on Hyaluronidase. Food Sci. Biotechnol. 2009, 18 (1), 267-270.
(92) Zeng, H. J.; Yang, R.; You, J.; Qu, L. B.; Sun, Y. J. Spectroscopic and Docking Studies on the Binding of Liquiritigenin with Hyaluronidase for Antiallergic Mechanism. Scientifica (Cairo). 2016, 2016. https://doi.org/10.1155/2016/9178097.
(93) Khan, M. T. H. Novel Tyrosinase Inhibitors From Natural Resources - Their Computational Studies. Curr. Med. Chem. 2012, 19 (14), 2262-2272. https://doi.org/CMC-EPUB-20120313-011 [pii].
(94) Ryu, H. W.; Song, H. H.; Shin, I. S.; Cho, B. O.; Jeong, S. H.; Kim, D. Y.; Ahn, K. S.; Oh, S. R. Suffruticosol A Isolated from Paeonia Lactiflora Seedcases Attenuates Airway Inflammation in Mice Induced by Cigarette Smoke and LPS Exposure. J. Funct. Foods 2015, 17, 774-784. https://doi.org/10.1016/j.jff.2015.06.036.
(95) Chen, W.-C.; Tseng, T.-S.; Hsiao, N.-W.; Lin, Y.-L.; Wen, Z.-H.; Tsai, C.-C.; Lee, Y.-C.; Lin, H.-H.; Tsai, K.-C. Discovery of Highly Potent Tyrosinase Inhibitor, T1, with Significant Anti-Melanogenesis Ability by Zebrafish in Vivo Assay and Computational Molecular Modeling. Sci. Rep. 2015, 5 (1), 7995. https://doi.org/10.1038/srep07995.
(96) Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin Whitening Agents: Medicinal Chemistry Perspective of Tyrosinase Inhibitors. J. Enzyme Inhib. Med. Chem. 2017, 32 (1), 403-425. https://doi.org/10.1080/14756366.2016.1256882.
(97) Limtrakul, P.; Yodkeeree, S.; Thippraphan, P.; Punfa, W.; Srisomboon, J. Anti-Aging and Tyrosinase Inhibition Effects of Cassia Fistula Flower Butanolic Extract. BMC Complement. Altern. Med. 2016, 16 (1), 497. https://doi.org/10.1186/s12906-016-1484-3.
(98) Luximon-Ramma, A.; Bahorun, T.; Soobrattee, M. A.; Aruoma, O. I. Antioxidant Activities of Phenolic, Proanthocyanidin, and Flavonoid Components in Extracts of Cassia Fistula. J. Agric. Food Chem. 2002, 50 (18), 5042-5047.
(99) Manonmani, G.; Bhavapriya, V.; Kalpana, S.; Govindasamy, S.; Apparanantham, T. Antioxidant Activity of Cassia Fistula (Linn.) Flowers in Alloxan Induced Diabetic Rats. J. Ethnopharmacol. 2005, 97 (1), 39-42. https://doi.org/10.1016/j.jep.2004.09.051.
(100) Bhalodia, N. R.; Shukla, V. J. Antibacterial and Antifungal Activities from Leaf Extracts of Cassia Fistula l.: An Ethnomedicinal Plant. J. Adv. Pharm. Technol. Res. 2011, 2 (2), 104-109. https://doi.org/10.4103/2231-4040.82956.
(101) Dai, Y.; Zhou, G.; Kurihara, H.; Ye, W.; Yao, X. Biphenyl Glycosides from the Fruit of Pyracantha f Ortuneana. J. Nat. Prod. 2006, 69 (7), 1022-1024. https://doi.org/10.1021/np0600853.
(102) Wang C.; Jia, Z. Lignan, Phenylpropanoid and Iridoid Glycosides from Pedicularis Torta. Phytochemistry 1997, 45, 159-166.
(103) Huang, X. X.; Liu, Q. B.; Wu, J.; Yu, L. H.; Cong, Q.; Zhang, Y.; Lou, L. L.; Li, L. Z.; Song, S. J. Antioxidant and Tyrosinase Inhibitory Effects of Neolignan Glycosides from Crataegus Pinnatifida Seeds. Planta Med. 2014, 80 (18), 1732-1738. https://doi.org/10.1055/s-0034-1383253.
(104) Cömert Önder, F.; Ay, M.; Aydoğan Türkoğlu, S.; Tura Köçkar, F.; Çelik, A. Antiproliferative Activity of Humulus Lupulus Extracts on Human Hepatoma (Hep3B), Colon (HT-29) Cancer Cells and Proteases, Tyrosinase, β -Lactamase Enzyme Inhibition Studies. J. Enzyme Inhib. Med. Chem. 2016, 31 (1), 90-98. https://doi.org/10.3109/14756366.2015.1004060.
(105) Arung, E. T.; Shimizu, K.; Kondo, R. Structure-Activity Relationship of Prenyl-Substituted Polyphenols from Artocarpus Heterophyllus as Inhibitors of Melanin Biosynthesis in Cultured Melanoma Cells. Chem. Biodivers. 2007, 4 (9), 2166-2171. https://doi.org/10.1002/cbdv.200790173.
(106) Jin, Y. J.; Lin, C. C.; Lu, T. M.; Li, J. H.; Chen, I. S.; Kuo, Y. H.; Ko, H. H. Chemical Constituents Derived from Artocarpus Xanthocarpus as Inhibitors of Melanin Biosynthesis. Phytochemistry 2015, 117, 424-435. https://doi.org/10.1016/j.phytochem.2015.07.003.
(107) Ko, H.-H.; Jin, Y.-J.; Lu, T.-M.; Chen, I.-S. A Novel Monoterpene-Stilbene Adduct with a 4,4-Dimethyl-2,3-Diphenylchromane Skeleton from Artocarpus Xanthocarpus. Chem. Biodivers. 2013, 10 (7), 1269-1275. https://doi.org/10.1002/cbdv.201200377.
(108) Leu, S. J.; Lin, Y. P.; Lin, R. D.; Wen, C. L.; Cheng, K. T.; Hsu, F. L.; Lee, M. H. Phenolic Constituents of Malus Doumeri Var. Formosana in the Field of Skin Care. Biol. Pharm. Bull. 2006, 29 (4), 740-745. https://doi.org/10.1248/bpb.29.740.
(109) Lin, Y. P.; Hsu, F. L.; Chen, C. S.; Chern, J. W.; Lee, M. H. Constituents from the Formosan Apple Reduce Tyrosinase Activity in Human Epidermal Melanocytes. Phytochemistry 2007, 68 (8), 1189-1199. https://doi.org/10.1016/j.phytochem.2007.02.001.
(110) Lee, M. G.; Kuo, S. Y.; Yen, S. Y.; Hsu, H. F.; Leung, C. H.; Ma, D. L.; Wen, Z. H.; Wang, H. M. D. Evaluation of Cinnamomum Osmophloeum Kanehira Extracts on Tyrosinase Suppressor, Wound Repair Promoter, and Antioxidant. Sci. World J. 2015, 2015. https://doi.org/10.1155/2015/303415.
(111) Wang, Z.; Hwang, S. H.; Huang, B.; Lim, S. S. Identification of Tyrosinase Specific Inhibitors from Xanthium Strumarium Fruit Extract Using Ultrafiltration-High Performance Liquid Chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 1002, 319-328. https://doi.org/10.1016/j.jchromb.2015.08.030.
(112) Bajpai, V. K.; Park, Y.-H.; Na, M.; Kang, S. C. α-Glucosidase and Tyrosinase Inhibitory Effects of an Abietane Type Diterpenoid Taxoquinone from Metasequoia Glyptostroboides. BMC Complement. Altern. Med. 2015, 15 (1), 84. https://doi.org/10.1186/s12906-015-0626-3.
(113) Batubara, I.; Kuspradini, H.; Mitsunaga, T. Anti-Acne and Tyrosinase Inhibition Properties of Taxifolin and Some Flavanonol Rhamnosides 45 from Kempas (Koompassia Malaccensis) Anti-Acne and Tyrosinase Inhibition Properties of Taxifolin and Some Flavanonol Rhamnosides from Kempas (Koompassia Malaccensis).
(114) Jones, K.; Hughes, J.; Hong, M.; Jia, Q.; Orndorff, S. Modulation of Melanogenesis by Aloesin: A Competitive Inhibitor of Tyrosinase. Pigment Cell Res. 2002, 15 (5), 335-340. https://doi.org/10.1034/j.1600-0749.2002.02014.x.
(115) Yagi, A.; Kanbara, T.; Morinobu, N. Inhibition of Mushroom-Tyrosinase by Aloe Extract. Planta Med. 1987, 53 (6), 515-517. https://doi.org/10.1055/s-2006-962798.
(116) Jin, Y. H.; Lee, S. J.; Chung, M. H.; Park, J. H.; Park, Y. I.; Cho, T. H.; Lee, S. K. Aloesin and Arbutin Inhibit Tyrosinase Activity in a Synergistic Manner via a Different Action Mechanism. Arch. Pharm. Res. 1999, 22 (3), 232-236.
(117) Choi, S.; Lee, S.-K.; Kim, J.-E.; Chung, M.-H.; Park, Y.-I. Aloesin Inhibits Hyperpigmentation Induced by UV Radiation. Clin. Exp. Dermatol. 2002, 27 (6), 513-515.
(118) Wu, B.; Chen, J.; Qu, H.; Cheng, Y. Complex Sesquiterpenoids with Tyrosinase Inhibitory Activity from the Leaves of Chloranthus Tianmushanensis. J. Nat. Prod. 2008, 71 (5), 877-880. https://doi.org/10.1021/np070623r.
(119) Kubo, I.; Kinst-Hori, I.; Chaudhuri, S. K.; Kubo, Y.; Sánchez, Y.; Ogura, T. Flavonols from Heterotheca Inuloides: Tyrosinase Inhibitory Activity and Structural Criteria. Bioorganic Med. Chem. 2000, 8 (7), 1749-1755. https://doi.org/10.1016/S0968-0896(00)00102-4.
(120) Kubo, I.; Yokokawa, Y. Two Tyrosinase Inhibiting Flavonol Glycosides from Buddleia Coriacea. Phytochemistry 1992, 31 (3), 1075-1077. https://doi.org/10.1016/0031-9422(92)80084-R.
(121) Biswas, R.; Chanda, J.; Kar, A.; Mukherjee, P. K. Tyrosinase Inhibitory Mechanism of Betulinic Acid from Dillenia Indica. Food Chem. 2017, 232 (April), 689-696. https://doi.org/10.1016/j.foodchem.2017.04.008.
(122) Muñoz, E.; Avila, J. G.; Alarcón, J.; Kubo, I.; Werner, E.; Céspedes, C. L. Tyrosinase Inhibitors from Calceolaria Integrifolia s.l.: Calceolaria Talcana Aerial Parts. J. Agric. Food Chem. 2013, 61 (18), 4336-4343. https://doi.org/10.1021/jf400531h.
(123) Biswas, R.; Mukherjee, P. K.; Chaudhary, S. K. Tyrosinase Inhibition Kinetic Studies of Standardized Extract of Berberis Aristata. Nat. Prod. Res. 2016, 30 (12), 1451-1454. https://doi.org/10.1080/14786419.2015.1062376.
(124) Lee, C. C.; Chen, Y. T.; Chiu, C. C.; Liao, W. T.; Liu, Y. C.; David Wang, H. M. Polygonum Cuspidatum Extracts as Bioactive Antioxidaion, Anti-Tyrosinase, Immune Stimulation and Anticancer Agents. J. Biosci. Bioeng. 2015, 119 (4), 464-469. https://doi.org/10.1016/j.jbiosc.2014.09.008.
(125) Leu, Y.-L.; Hwang, T.-L.; Hu, J.-W.; Fang, J.-Y. Anthraquinones from Polygonum Cuspidatum as Tyrosinase Inhibitors for Dermal Use. Phytother. Res. 2008, 22 (4), 552-556. https://doi.org/10.1002/ptr.2324.
(126) Lee, M. H.; Kao, L.; and Lin, C. C. Comparison of the Antioxidant and Transmembrane Permeative Activities of the Different Polygonum Cuspidatum Extracts in Phospholipid-Based Microemulsions. J. Agric. Food Chem. 2011, 59, 9135-9141.
(127) Zheng, Z.-P.; Zhu, Q.; Fan, C.-L.; Tan, H.-Y.; Wang, M. Phenolic Tyrosinase Inhibitors from the Stems of Cudrania Cochinchinensis. Food Funct. 2011, 2 (5), 259-264. https://doi.org/10.1039/c1fo10033e.
(128) Zhang, P.C.; Feng Z.M., and W. Y. Flavonoids, Including an Unusual Flavonoids-Mg2+ Salt, from Roots of Cudrania Cochinchinensis. Phytochemistry 2005, 66, 2759-2765.
(129) Nguyen, N. T.; Nguyen, M. H. K.; Nguyen, H. X.; Bui, N. K. N.; Nguyen, M. T. T. Tyrosinase Inhibitors from the Wood of Artocarpus Heterophyllus. J. Nat. Prod. 2012, 75 (11), 1951-1955. https://doi.org/10.1021/np300576w.
(130) Zheng, Z.-P.; Cheng, K.-W.; To, J. T.-K.; Li, H.; Wang, M. Isolation of Tyrosinase Inhibitors from Artocarpus Heterophyllus and Use of Its Extract as Antibrowning Agent. Mol. Nutr. Food Res. 2008, 52 (12), 1530-1538. https://doi.org/10.1002/mnfr.200700481.
(131) Arung, E. T.; Yoshikawa, K.; Shimizu, K.; Kondo, R. Isoprenoid-Substituted Flavonoids from Wood of Artocarpus Heterophyllus on B16 Melanoma Cells: Cytotoxicity and Structural Criteria. Fitoterapia 2010, 81 (2), 120-123. https://doi.org/10.1016/j.fitote.2009.08.001.
(132) Shou, Q.-Y.; Fu, R.-Z.; Tan, Q.; Shen, Z.-W. Geranylated Flavonoids from the Roots of Campylotropis Hirtella and Their Immunosuppressive Activities. J. Agric. Food Chem. 2009, 57 (15), 6712-6719. https://doi.org/10.1021/jf9009894.
(133) Tan, X.; Song, Y. H.; Park, C.; Lee, K. W.; Kim, J. Y.; Kim, D. W.; Kim, K. D.; Lee, K. W.; Curtis-Long, M. J.; Park, K. H. Highly Potent Tyrosinase Inhibitor, Neorauflavane from Campylotropis Hirtella and Inhibitory Mechanism with Molecular Docking. Bioorganic Med. Chem. 2016, 24 (2), 153-159. https://doi.org/10.1016/j.bmc.2015.11.040.
(134) Zolghadri, S.; Bahrami, A.; Hassan Khan, M. T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A. A. A Comprehensive Review on Tyrosinase Inhibitors. J. Enzyme Inhib. Med. Chem. 2019, 34 (1), 279-309. https://doi.org/10.1080/14756366.2018.1545767.
(135) Wang, Y.; Curtis-Long, M. J.; Lee, B. W.; Yuk, H. J.; Kim, D. W.; Tan, X. F.; Park, K. H. Inhibition of Tyrosinase Activity by Polyphenol Compounds from Flemingia Philippinensis Roots. Bioorganic Med. Chem. 2014, 22 (3), 1115-1120. https://doi.org/10.1016/j.bmc.2013.12.047.
(136) Hubert, J.; Angelis, A.; Aligiannis, N.; Rosalia, M.; Abedini, A.; Bakiri, A.; Reynaud, R.; Nuzillard, J. M.; Gangloff, S. C.; Skaltsounis, A. L.; Renault, J. H. In Vitro Dermo-Cosmetic Evaluation of Bark Extracts from Common Temperate Trees. Planta Med. 2016, 82 (15), 1351-1358. https://doi.org/10.1055/s-0042-110180.
(137) Lin, Q. M.; Wang, Y.; Yu, J. H.; Liu, Y. L.; Wu, X.; He, X. R.; Zhou, Z. W. Tyrosinase Inhibitors from the Leaves of Eucalyptus Globulus. Fitoterapia 2019, 139, 104418. https://doi.org/10.1016/j.fitote.2019.104418.
(138) Shi, F.; Xie, L.; Lin, Q.; Tong, C.; Fu, Q.; Xu, J.; Xiao, J.; Shi, S. Profiling of Tyrosinase Inhibitors in Mango Leaves for a Sustainable Agro-Industry. Food Chem. 2020, 312, 126042. https://doi.org/10.1016/j.foodchem.2019.126042.
(139) Yang, Y.; Sun, X.; Ni, H.; Du, X.; Chen, F.; Jiang, Z.; Li, Q. Identification and Characterization of the Tyrosinase Inhibitory Activity of Caffeine from Camellia Pollen; 2019; Vol. 67. https://doi.org/10.1021/acs.jafc.9b04929.
(140) Castañeda-Loaiza, V.; Placines, C.; Rodrigues, M. J.; Pereira, C. G.; Zengin, G.; Neng, N. R.; Nogueira, J. M. F.; Custódio, L. In Vitro Enzyme Inhibitory and Anti-Oxidant Properties, Cytotoxicity and Chemical Composition of the Halophyte Malcolmia Littorea (L.) R.Br. (Brassicaceae). Nat. Prod. Res. 2020, 0 (0), 1-4. https://doi.org/10.1080/14786419.2020.1719484.
(141) Sinan, K. I.; Llorent-Martínez, E. J.; Bene, K.; Mahomoodally, M. F.; Lobine, D.; Aktumsek, A.; Zengin, G. Novel Insights into the Fruit and Seed Extracts of Morinda Morindoides (Baker) Milne-Redh: HPLC-ESI-Q-TOF-MS Profiling, Antioxidant, and Enzyme Inhibitory Propensities. J. Food Biochem. 2020, 44 (5), 1-9. https://doi.org/10.1111/jfbc.13169.
(142) Cimanga, R., Mukenyi, P., Kambu, O., Tona, G., Apers, S., Totte, J., Vlietinck, A. The Spasmolytic Activity of Extracts and Some Isolated Compounds from the Leaves of Morinda Morindoides (Baker) Milne-Redh. (Rubiaceae). J. Ethnopharmacol. 2010, 127 (2), 215-220.
(143) Marie-Genevieve, O., Robin, O. P., Gregory, G., Catherine, L., & C.; M. Cytotoxic Effect Induced by Morinda Morindoides Leaf Extracts in Human and Murine Leukemia Cells. African J. Biotechnol. 2010, 9 (39), 6560-6565.
(144) Tona, L., Mesia, K., Ngimbi, N., Chrimwami, B., Okond'Ahoka, C.; K., Totte, J. In-Vivo Antimalarial Activity of Cassia Occidentalism, Morinda Morindoides and Phyllanthus Niruri. Ann. Trop. Med. Parasitol. 2001, 95 (1), 47-57.
(145) Placines, C.; Castañeda-Loaiza, V.; Rodrigues, M. J.; Pereira, C. G.; Stefanucci, A.; Mollica, A.; Zengin, G.; Llorent-Martínez, E. J.; Castilho, P. C.; Custódio, L. Phenolic Profile, Toxicity, Enzyme Inhibition, in Silico Studies, and Antioxidant Properties of Cakile Maritima Scop. (Brassicaceae) from Southern Portugal. Plants 2020, 9 (2), 1-24. https://doi.org/10.3390/plants9020142.
(146) Davy, A.J.; Scott, R.; Cordazzo, C. V. Biological Flora of the British Isles: Cakile Maritima Scop. J. Ecol. 2006, 94, 695-71.
(147) Fuochi, V.; Barbagallo, I.; Distefano, A.; Puglisi, F.; Palmeri, R.; Rosa, M.D.I.; Giallongo, C.; Longhitano, L.; Fontana, P.; Sferrazzo, G. . et al. Biological Properties of Cakile Maritima Scop. (Brassicaceae) Extracts. Eur. Rev. Med Pharmacol. Sci. 2019, 23, 2280-2292.
(148) Kim, J. H.; Leem, H. H.; Lee, G. Y. The Guanidine Pseudoalkaloids 10‐methoxy‐ Leonurine and Leonurine Act as Competitive Inhibitors of Tyrosinase. Biomolecules 2020, 10 (2). https://doi.org/10.3390/biom10020174.
(149) Zhong, W.‐M.; Cui, Z.‐M.; Liu, Z.‐K.; Yang, Y.; Wu, D.‐R.; Liu, S.‐H.; Long, H.; Sun, H.‐D.; Dang, Y. ‐J. . X.; W.‐L. Three Minor New Compounds from the Aerial Parts of Leonurus Japonicas. Chinese Chem. Lett. 2015, 26, 1000-1003.
(150) Honisch, C.; Osto, A.; Dupas de Matos, A.; Vincenzi, S.; Ruzza, P. Isolation of a Tyrosinase Inhibitor from Unripe Grapes Juice: A Spectrophotometric Study. Food Chem. 2020, 305 (September 2019), 125506. https://doi.org/10.1016/j.foodchem.2019.125506.
(151) Mutschlechner, B.; Rainer, B.; Schwaiger, S.; Stuppner, H. Tyrosinase Inhibitors from the Aerial Parts of Wulfenia Carinthiaca Jacq. Chem. Biodivers. 2018, 15 (4), 4-11. https://doi.org/10.1002/cbdv.201800014.
(152) Ishihara, A.; Ide, Y.; Bito, T.; Ube, N.; Endo, N.; Sotome, K.; Maekawa, N.; Ueno, K.; Nakagiri, A. Novel Tyrosinase Inhibitors from Liquid Culture of Neolentinus Lepideus. Biosci. Biotechnol. Biochem. 2018, 82 (1), 22-30. https://doi.org/10.1080/09168451.2017.1415125.
(153) Revoltella, S.; Rainer, B.; Waltenberger, B.; Pagitz, K.; Schwaiger, S.; Stuppner, H. HPTLC Autography Based Screening and Isolation of Mushroom Tyrosinase Inhibitors of European Plant Species. Chem. Biodivers. 2019, 16 (3). https://doi.org/10.1002/cbdv.201800541.
(154) Han, E. B.; Chang, B. Y.; Kim, D. S.; Cho, H. K.; Kim, S. Y. Melanogenesis Inhibitory Effect of Aerial Part of Pueraria Thunbergiana in Vitro and in Vivo. Arch. Dermatol. Res. 2014, 307 (1), 57-72. https://doi.org/10.1007/s00403-014-1489-z.
(155) Qu, L.; Song, K.; Zhang, Q.; Guo, J.; Huang, J. Simultaneous Determination of Six Isoflavones from Puerariae Lobatae Radix by CPE-HPLC and Effect of Puerarin on Tyrosinase Activity. Molecules 2020, 25 (2). https://doi.org/10.3390/molecules25020344.
(156) Lim DW, Lee C, Kim IH, K. Y. Anti-Inflammatory Effects of Total Isoflavones from Pueraria Lobata on Cerebral Ischemia in Rats. Molecules 2013, 18 (9), 10404-10412.
(157) Xiong Y, Yang Y, Yang J, Chai H, Li Y, Jia Z, W. Z. Tectoridin, an Isoflavone Glycoside from the Flower of Pueraria Lobata, Prevents Acute Ethanol-Induced Liver Steatosis in Mice. Toxicology 2010, 276 (1), 64-72.
(158) Chai, W. M.; Wei, Q. M.; Deng, W. L.; Zheng, Y. L.; Chen, X. Y.; Huang, Q.; Ou-Yang, C.; Peng, Y. Y. Anti-Melanogenesis Properties of Condensed Tannins from: Vigna Angularis Seeds with Potent Antioxidant and DNA Damage Protection Activities. Food Funct. 2019, 10 (1), 99-111. https://doi.org/10.1039/c8fo01979g.
(159) Wolfender, J.-L.; Marti, G.; Thomas, A.; Bertrand, S. Current Approaches and Challenges for the Metabolite Profiling of Complex Natural Extracts. J. Chromatogr. A 2015, 1382, 136-164. https://doi.org/10.1016/j.chroma.2014.10.091.
(160) Brewer, M. S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10 (4), 221-247. https://doi.org/10.1111/j.1541-4337.2011.00156.x.
(161) Zheng, Z.-P. P.; Tan, H.-Y. Y.; Chen, J.; Wang, M. Characterization of Tyrosinase Inhibitors in the Twigs of Cudrania Tricuspidata and Their Structure-Activity Relationship Study. Fitoterapia 2013, 84 (1), 242-247. https://doi.org/10.1016/j.fitote.2012.12.006.
(162) Hano, Y.; Matsumoto, Y.; Shinohara, K., Sun, J.Y.; Nomura, T. Cudraflavones C and D, Two New Prenylflavones from the Root Bark of Cudrania Tricuspidata (Carr.). Bur. Heterocycles 1990, 31, 1339-1341.
(163) Zheng, Z.-P.; Liang, J.-Y.; Hu, L.-H. Water-Soluble Constituents of Cudrania Tricuspidata (Carr.) Bur. J. Integr. Plant Biol. 2006, 48 (8), 996-1000. https://doi.org/10.1111/j.1744-7909.2006.00227.x.
(164) No, J. K.; Soung, D. Y.; Kim, Y. J.; Shim, K. H.; Jun, Y. S.; Rhee, S. H.; Yokozawa, T.; Chung, H. Y. Inhibition of Tyrosinase by Green Tea Components. Life Sci. 1999, 65 (21), PL241-PL246. https://doi.org/10.1016/S0024-3205(99)00492-0.
(165) Chang, T.-S. An Updated Review of Tyrosinase Inhibitors. Int. J. Mol. Sci. 2009, 10 (6), 2440-2475. https://doi.org/10.3390/ijms10062440.
(166) Kubo, I.; Kinst-Hori, I. Flavonols from Saffron Flower: Tyrosinase Inhibitory Activity and Inhibition Mechanism. J. Agric. Food Chem. 1999, 47 (10), 4121-4125.
(167) Chen, Q.-X.; Kubo, I. Kinetics of Mushroom Tyrosinase Inhibition by Quercetin. J. Agric. Food Chem. 2002, 50 (14), 4108-4112. https://doi.org/10.1021/jf011378z.
(168) Parvez, S.; Kang, M.; Chung, H.-S.; Bae, H.; Shoukat Parvez1, Moonkyu Kang2, H.-S. C. and H. B. Naturally Occurring Tyrosinase Inhibitors: Mechanism and Applications in Skin Health, Cosmetics and Agriculture Industries. Phytother. Res. 2007, 21 (9), 805-816. https://doi.org/10.1002/ptr.2184.
(169) Xie, L.-P.; Chen, Q.-X.; Huang, H.; Wang, H.-Z.; Zhang, R.-Q. Inhibitory Effects of Some Flavonoids on the Activity of Mushroom Tyrosinase. Biochemistry. (Mosc). 2003, 68 (4), 487-491.
(170) Kim, Y.-J.; Uyama, H. Tyrosinase Inhibitors from Natural and Synthetic Sources: Structure, Inhibition Mechanism and Perspective for the Future. Cell. Mol. Life Sci. 2005, 62 (15), 1707-1723. https://doi.org/10.1007/s00018-005-5054-y.
(171) Kim, Y. J. Rhamnetin Attenuates Melanogenesis by Suppressing Oxidative Stress and Pro-Inflammatory Mediators. Biol. Pharm. Bull. 2013, 36 (8), 1341-1347. https://doi.org/10.1248/bpb.b13-00276.
(172) Seo, S. Y.; Sharma, V. K.; Sharma, N. Mushroom Tyrosinase: Recent Prospects. J. Agric. Food Chem. 2003, 51 (10), 2837-2853. https://doi.org/10.1021/jf020826f.
(173) Wu, Y.; Wu, Z. R.; Chen, P.; Yang-Li; Deng, W. R.; Wang, Y. Q.; Li, H. Y. Effect of the Tyrosinase Inhibitor (S)-N-Trans-Feruloyloctopamine from Garlic Skin on Tyrosinase Gene Expression and Melanine Accumulation in Melanoma Cells. Bioorganic Med. Chem. Lett. 2015, 25 (7), 1476-1478. https://doi.org/10.1016/j.bmcl.2015.02.028.
(174) Yi Dai; Guang-xiong Zhou; Hiroshi Kurihara; Wen-cai Ye, and; Xin-sheng Yao. Biphenyl Glycosides from the Fruit of Pyracantha Fortuneana. 2006. https://doi.org/10.1021/NP0600853.
(175) Lee, S. Y.; Baek, N.; Nam, T. G. Natural, Semisynthetic and Synthetic Tyrosinase Inhibitors. J. Enzyme Inhib. Med. Chem. 2016, 31 (1), 1-13. https://doi.org/10.3109/14756366.2015.1004058.
(176) Ebanks, J. P.; Wickett, R. R.; Boissy, R. E. Mechanisms Regulating Skin Pigmentation: The Rise and Fall of Complexion Coloration. Int. J. Mol. Sci. 2009, 10 (9), 4066-4087. https://doi.org/10.3390/ijms10094066.
(177) Draelos, Z. D. Skin Lightening Preparations and the Hydroquinone Controversy. Dermatol. Ther. 2007, 20 (5), 308-313. https://doi.org/10.1111/j.1529-8019.2007.00144.x.
(178) Chang, T. S. An Updated Review of Tyrosinase Inhibitors. Int. J. Mol. Sci. 2009, 10 (6), 2440-2475. https://doi.org/10.3390/ijms10062440.
(179) Kim, S. J.; Son, K. H.; Chang, H. W.; Kang, S. S.; Kim, H. P. Tyrosinase Inhibitory Prenylated Flavonoids from Sophora Flavescens. Biol. Pharm. Bull. 2003, 26 (9), 1348-1350.
(180) Hyun, S. K.; Lee, W.-H.; Jeong, D. M.; Kim, Y.; Choi, J. S. Inhibitory Effects of Kurarinol, Kuraridinol, and Trifolirhizin from Sophora Flavescens on Tyrosinase and Melanin Synthesis. Biol. Pharm. Bull. 2008, 31 (1), 154-158.
(181) Shin, N. H.; Ryu, S. Y.; Choi, E. J.; Kang, S. H.; Chang, I. M.; Min, K. R.; Kim, Y. Oxyresveratrol as the Potent Inhibitor on Dopa Oxidase Activity of Mushroom Tyrosinase. Biochem. Biophys. Res. Commun. 1998, 243 (3), 801-803. https://doi.org/10.1006/bbrc.1998.8169.
(182) Leu, Y.-L.; Hwang, T.-L.; Hu, J.-W.; Fang, J.-Y. Anthraquinones FromPolygonum Cuspidatum as Tyrosinase Inhibitors for Dermal Use. Phyther. Res. 2008, 22 (4), 552-556. https://doi.org/10.1002/ptr.2324.
(183) Cruz-Vega, D.; Verde-Star, M. J.; Salinas-Gonzalez, N. R.; Rosales-Hernandez, B.; Estrada-Garcia, I.; Mendez-Aragon, P.; Carranza-Rosales, P.; Gonzalez-Garza, M.; Castro-Garza, J. Review of Pharmacological Effects of Glycyrrhiza Radix and Its Bioactive Compounds. Zhongguo Zhong Yao Za Zhi 2009, 22 (April 2008), 557-559. https://doi.org/10.1002/ptr.
(184) Kim, Y.-J. J.; Uyama, H. Tyrosinase Inhibitors from Natural and Synthetic Sources: Structure, Inhibition Mechanism and Perspective for the Future. Cell. Mol. Life Sci. 2005, 62 (15), 1707-1723. https://doi.org/10.1007/s00018-005-5054-y.
(185) Kubo, I.; Kinst-Hori, I. 2-Hydroxy-4-Methoxybenzaldehyde: A Potent Tyrosinase Inhibitor from African Medicinal Plants. Planta Med. 1999, 65 (1), 19-22.
(186) Ha, T. J.; Tamura, S.; Kubo, I. Effects of Mushroom Tyrosinase on Anisaldehyde. J. Agric. Food Chem. 2005, 53 (18), 7024-7028. https://doi.org/10.1021/jf047943q.
(187) Lee, H.-S. Tyrosinase Inhibitors of Pulsatilla Cernua Root-Derived Materials. J. Agric. Food Chem. 2002, 50 (6), 1400-1403.
(188) Isao Kubo, and I. K.-H. Tyrosinase Inhibitors from Cumin. 1998. https://doi.org/10.1021/JF980226+.
(189) Jiménez, M.; Chazarra, S.; Escribano, J.; Cabanes, J.; García-Carmona, F. Competitive Inhibition of Mushroom Tyrosinase by 4-Substituted Benzaldehydes. J. Agric. Food Chem. 2001, 49 (8), 4060-4063.
(190) D. Datta and S. Kumar. Modeling Using Response Surface Methodology and Optimization Using Differential Evolution of Reactive Extraction of Glycolic Acid,. Chem Eng Commun, 202, 59-69.
(191) Ma, D.; Tu, Z. C.; Wang, H.; Zhang, L.; He, N.; McClements, D. J. Mechanism and Kinetics of Tyrosinase Inhibition by Glycolic Acid: A Study Using Conventional Spectroscopy Methods and Hydrogen/Deuterium Exchange Coupling with Mass Spectrometry. Food Funct. 2017, 8 (1), 122-131. https://doi.org/10.1039/c6fo01384h.