Table S1: Plants, extracts and isolated compounds that have been studied for their inhibitory properties towards HNE.

Plant

Medicinal use

Inhibition towards HNE

Ref.

Camelia Sitensis (Green tea)

Antoxidant, antifungal, antimutagenic, anticarcinogenic, antidiabetic agent, treatment against cardiovascular diseases, and many types of cancer (colon, lung, mouth, esophagus, stomach, kidney, small intestine, pancreas, mammary glands, excellent food intake agent

ECGC ( IC50=250 μΜ)

1

Boswellia spp.

Anti-inflammatory properties

Potent inhibition

1

Tagetes erecta L. (Marigold ) (Compositae)

Skin disorders(sores, wounds, burns, ulcers, eczema etc), kidney problems, muscular pain boils, carbuncles, earache

Methanolic extract:IC50=4.13±0.93 mg/ml

Butanoic extract:IC50=4.01±1.37 mg/ml

Syringic acid (IC50=34.29±

Amyrin (IC50=33.98±1.82 mg.mL

2

Ilex paraquariensis St. Hil (Used in Yerba Mate tea) (Aquifoliaceae)

Antioxidant, cellular protective, anti-obesity, thermogenic, circulatory system, hypocholesterolemic and bile stimulant regulator, use as tonic and stimulant beverage agent

Ethanolic extract (IC50=0.5 μg/ml)

Methanolic extract (IC50= 1.38 μg/ml)

Dicaffeoylquinic acid derivatives:

3,5 dicaffeoylquinic acid methyl ester (IC50= 1.4 μΜ)

3,4-dicaffeoylquinic acid methyl ester (IC50=4.2 μΜ)

3,5-dicaffeoylquinic acid (IC50= 2.4 μΜ)

4,5-dicaffeoylquinic acid methyl ester (IC50=1.7 μΜ)

3,4-dicaffeoylquinic acid (IC50=7.3 μΜ)

1,5-dicaffeoylquinic acid (IC50=151 μΜ)

Monocaffeoylquinic acid derivatives:

Neochlorogenic acid methyl ester, cryptochlorogenic acid methyl ester, chlorogenic acid methyl ester: weak HNE inhibition

Quercetin (IC50=1.5 μΜ)

Rutin (IC50= 6.9 μΜ)

Kaempferol 3-O-rutinoside: no inhibition

3

Cucumis sativus L. (Cucumber) (Cucurbitaceae)

Skin irritations ans disorders (swelling under the eyes, sunburn), healing agent against cooling, healing, soothing, emollient, lenitive and anti itching effects, hyperpigmentation

Juice of C. sativus inhibits 50% of HNE activity at a concentarion of 6.14 μg/ml

4

Cimicifuga Racemosa (Black Cohosh) (Ranunculaceae)

Analgesic, sedative and anti-inflammatory agent

Caffeic acid: (IC50=93 μΜ)

Fukinolic acid (IC50=0.23 μΜ)

cimicifugic acid A (IC50= 2.2 μΜ)

cimicifugic acid B (IC50=11.4 μΜ)

cimicifugic acid E (20% HNE inhibition at 50 μΜ)

cimicifugic acid F (IC50= 18 μΜ)

isoferulic acid (IC50> 50 μΜ)

Ferulic acid (IC50>> 500 μΜ)

Elastinal (IC50= 1150 μΜ)

5

Olea europaea L. (Oleaceae)

Diuretic, hypotensive, emollient agent, used for urinary and bladder infections and skin disorders

( E) -2- octenal (potent HNE inhibition)

(E ) -2-nonenal (potent HNE inhibition)

6

Diospyros kaki folium (Persimmon leaf)

Agent against skin disorders, anti-wrinkle agent

Ethanolic fraction II (flavonoid content) (78.1% HNE inhibition at 500 μΜ)

Ethanolic fraction III (polyphenolic content) (28.8% HNE inhibition at 500 μΜ)

7

Ginseng

Antioxidant properties

Extracts inhibit 90% of HNE activity at 0.14 mg/ml

8

Actinodaphne lancifolia

Treatments against urinary disorders and diabetes, antioxidant, cytotoxic antidiarrheal, thrombolytic properties

IC50= 103.10 μg/ml)

9

Aesculus turbinata

Anti-inflammatory, anti-edematous, capillaro-protective properties, cosmetics and food agent

IC50= 43.10 μg/ml

9

Cleyera japonica

Antioxidant, free radical scavenging properties

IC50=205.90 μg/ml

9

Cornus controversa

Free radical scavenger, anti-tyrosinase and anti-elastase properties

IC50= 163 μg/ml

9

Cornus walteri

Skin anti-inflammatory agent, antioxidant, antidiarrheal, antihyperglycemic, anti-obesity properties

IC50= 26.1 μg/ml

9

Cryptomeria japonica

Protection of human keratinocytes

(IC50=108.2 μg/ml)

9

Euscaphis japonica

Antioxidant, antitumor agent

IC50=455.90 μg/ml

9

Machilus japonica (Kusanoi)

Antimicrobial, anti-α-glucosidase, anti-inflammatory properties

IC50=108.2 μg/ml

9

Melia azedarach

Antidiarrheal, ant-malaria, antidiabetic, antidiabetic properties, treatments against rheumatism, asthma, leprosy, eczema, piles, ulcers, toothaches, fevers, snake bites, treatment against skin disorders

(IC50=293.20 μg/ml

9

Oenothera erythrosepala

Atioxidant, anti-inflammatory, antidiabetic, anti-bacterial, anti-neuropathic, anti-fungal, anti-diarrheic, cariostatic, antiviral, anti-ulcerogenic, antihelmintic properties, anti-cancer. Anti-tumor agent, treatment against kidney disordes, hepatic disorders, cardiac disorders nematicidal activity, immune response activity, hypocholesterolemic activity, vasorelaxation activity

IC50=87.80 μg/ml

9

Rhus javanica

Antioxidant, anti-inflammatory, antibacterial, antiviral, anticancer, antidiarrhoeal, hepatoprotective properties, treatment against dysentery and coughs

IC50=70.5 μg/ml

9

Rosa multiflora

Antioxidant, antibacterial properties, skin care cosmetics agent

IC50= 371.90 μg/ml

9

Sophora flavescens

Analgesic, antipyretic, anthemintic and stomachic properties

IC50=219.5 μg/ml

9

Taxillus yadoriki

Antioxidant, anti-inflammatory, anti-aging, skin-whitening agent, anti-elastase and anti-tyrosinase activity, skin care cosmetics agent

IC50=36.4 μg/ml

9

Viburnum odoratissimum

Antioxidant, antiwrinkle properties, skin care cosmetics agent

IC50=80.80 μg/ml

9

Areca catechu

Anti-inflammatory, anti-aging properties

IC50=28.10 μg/ml

9

Centella asiatica (L.) Urban (Gptu Kola) (Apiaceae)

Various health disorders, anti-aging agent in cosmetics

Methanolic extract (IC50=14.54±0.39 μg/ml)

n-butanolic extract (IC50=29.15±0.31 μg/ml)

Asiaticoside (IC50=19.45±0.25 μg/ml)

 

1,10

Clitoria ternates L. (Butterfly pea ) (Fabaceae)

Central nervous system (CNS) disorders (depression, anxiety, stress etc), skin disorders, antipyretic, anti-inflammatory, analgesic, local anesthetic and antidiabetic agent

Methanolic extract (IC50= 9.61±0.36 μg/ml)

11

Grape pomace

Skin anti-aging agent

Polyphenolic extracts (73% HNE inhibition at 35.3 μg/ml, 63% HNE inhibition at 23.5 μg/ml, 49% HNE inhibition at 14.1 μg/ml, 36% HNE inhibiton at 8.8 μg/mland 20% HNE inhibition at 7.1 μg/ml.

Fraction abundant in gallic acid (IC50= 47%)

Fraction abundant in catechins (IC50= 17%)

Fraction abundant in procyanidins (IC50= 19%)

Fraction abundant in flavonol-glucosides (IC50=2%)

Catechin (IC50=12.0% at 1mmol/l)

Epigallocatechin gallate (EGCG) (IC50=7.3% at 1 mmol/l)

Procyanidin B2 (6.4% at 1mmol/l)

12

Harpagophytum procumbens (Devil's claw)

Skin disorders

6΄-O-acetylacteoside (IC50= 70 μΜ)

Isoacteoside (IC50= 286 μΜ)

8-PCHG (IC50= 331 μΜ)

Pagoside (IC50= 260 μΜ)

Harpagoside (IC50~>800 μΜ)

Acteoside (IC50~>800 μΜ)

Cinnamic acid (IC50~>800 μΜ)

 

13

Vitis vinifera (Grape vine)

Anti-inflammatory and antioxidant agent, free radical scavenger, treatment against cardiovascular diseases

Seeds extract (IC50= 5.4 μΜ)

12

Polypodium species

Treatment against peptic ulcer, kidney disorders, rheumatoid arthritis, psoriasis, skin disorders (dermatitis, vitiligo)

Selligueain (IC50=40 μΜ in leukocytes)

14

Lythrum salicaria L. (Lythraceae)

Anti-inflammatory properties, treatment against haemorrhoidal disease, dysentert, chronic intestinal catarrh, eczema, periodontidis, varicose veins, gingivitis, skin care agent

IC50=37.80±5.9% at 10 μg/ml

15

Geum urbanum L. (Rosaceae)

 

Treatment against periodontitis stomach disorders, anti-bleeding, anti-inflammatory properties for gums and mucous membranes,

IC50=30.4±4.8% at 10 μg/ml

15

Rubus idaeus L. (Rosaceae)

Anti-inflammatory, antimicrobial agent, treatments against common cold, fever and flu-like infections

IC50=36.10±0.4% at 10 μg/ml

15

Rubus fruticosus L. (Rosaceae)

Antibacterial, antinociceptive, antiproliferative, analgesic properties

IC50=30.70±5.6% at 10 μg/ml

15

Potentilla erecta L Raeusch.(Rosaceae)

Antidiarrheal, anti-ulcerogenic, hemostatic, antihemorrhoidal, wound- healing, skin photoprotecting, free radican scavenging agents

IC50=37.40±3.9% at 10 μg/ml

15

Filipendula ulmaria L. (Rosaceae)

Dugestive agent, treatment against hetburn, hyperactivity, diarrhoea, gastritis, peptic ulceration, rheumatism, elimination of excess acidity and nauesa

IC50=57.4±5.3% at 10 μg/ml

15

Maxim Potentilla anserina L. (Rosaceae)

Anti-inflammatory, wound healing, antitumor, antibacterial, antifungal, antivirues, antidiarrhetic and antidiabetic properties

IC50=7.50±1.0% at 10 μg/ml

15

Agrimonia eupatoria L. (Rosaceae)

Antiadhesive, antibacterial, antioxidant, astringent, anti-inflammatory, hepatoprotective properties, treatment against bed wetting, hemorrhagic colitis, liver and urinary disease, cancer, acute diarrhea, diabetes mellitus, inflammation of oral and pharyngeal mucosa, hepatitis B virus

IC50=55.2±4.1% at 10 μg/ml

15

Geranium pretense L. (Geraniaceae)

Antidiarrheic, diuretic, tonic, hemostatic, stomachic and antidiabetic agent

IC50=16.10±3.6% at 10 μg/ml

15

Geranium robertianum L (Geraniaceae)

Antioxidant, antimicrobial, antidiabetic, antiulcer, neuroprotective, cytotoxic against tumor cells properties, pro-inflammatory agent, food additive

IC50=34.70±4.5% at 10 μg/ml

15

Aesculus hippocastanum L. (Hippocastanaceae)

Anti-inflammatory, anti-elastase, venotonic, lymphagogue, anti-oedematous properties

IC50=62.0±6.9% at 10 μg/ml

15

Campylotropis hirtella L. (Leguminosae)

Dysmenorrhea, metrorrhagia, metrostaxis, gastric ucers, prostate hyperplasia. Food agent

Ethyl acetate extract (80% HNE inhibition at 100 μg/ml)

(2R, 3R)-6-methyl-30-geranyl-2,3-trans-5,7,40-trihydroxy-flavonol (IC50=17.9±1.5 μΜ, noncompetitive inhibition)

(E)-3-(3-(3,7-dimethylocta-2,6-dienyl)-2,4-dihydroxyphenyl)-3,5,7-trihydroxy-chroman-4-one (IC50=8.4±0.8 μΜ, competitive inhibition)

3΄-geranyl-5, 7, 2΄, 4΄-tetrahydroxyisoflavanone (IC50=30.8±1.3 μΜ, mixed inhibition).

16,16-20

Phillanthus Emblica L. (Amla)

Antioxidant, anti-tyrosinase, anti-wrinkle, antibacterial, anti-inflammatory properties, cosmetic agent

IC50=387.85±8.78 μg/ml

21

Manilkara zapota L. (Sapota)

Antixidant, anti-collagenase and anti-elastase properties

Methanolic extract (IC50=35.73±0.61 μg/ml)

21,22

Silibum Marianum

Antioxidant, anti-inflammatory, skin photoprotective properties, treatments against skin aking and melanoma development

IC50=38.57±0.04 μg/ml μg/ml

21,22

Dodonea viscosa L. (Jack) (Sapindaceae)

Skin, disorders, diabetes, antibacterial, antifungal and anti-inflammattory agent

Aerial parts methanolic extract (75% HNE inhibition at 100 μg/ml)

Visconata (IC50=2.4±0.2 μΜ, noncompetitive inhibition), penduletin (IC50=65.4±0.1 μΜ, mixed inhibition),

5,6-dihydroxy-3,4΄,7-trimethoxyflavone (IC50=25.4±0.4 μΜ, mixed inhibition),

viscosine (IC50=150.2±1.2 μΜ, non responding inhibition), isokaemferide (IC50=93.9±0.6 μΜ, mixed inhibition), viscosol (IC50=10.9±0.3 μΜ, mixed inhibition), 5,7-dihydroxy-3΄-(2-hydroxy-3-methylbutenyl)-3,6,4΄-trimethoxy-flavone (IC50=114.7±0.2 μΜ, not reported inhibition, 5,7-dihydroxy-3΄-(3-hydroxy-methylbutyl)-3,6,40-trimethoxyflavone (IC50=33.4±0.5 μΜ, mixed inhibition), and 5,7,4΄-trihydroxy-3΄-(3-hydroxymethylbutyl)-3,6-dimethoxyflavone (IC50=74.7 ±0.3 μΜ, mixed inhibition)

 

23,24

Grindelia robusta Nutt. (Asteraceae)

Anti-inflammatory, antimicrobial and expectorant agent, catarrhs of the respiratory tract

Quercetin-3-methylether (IC50=19 μΜ)

Quercetin-3, 3΄-dimethylether (IC50=129 μΜ)

Quercetagetin-3,6-dimethylether (IC50=115 μΜ)

25,26

Chelidonium majus L. (Papaveraceae)

Gastric ukcer, oral infection, liver disease, anti-cancer, anti-inflammatory and antiviral agent

Aeg/ml)rial part methanolic extract (88% HNE inhibition at 100

Alkaloids: Isoquinoline spallidamine (IC50 = 11.6 μΜ) dihydrosanguinarine (IC50 =>200 μΜ), (s)-stylopine (IC50=51.0±0.4 μΜ, reversible mixed type I), amottianamide (IC50=>200), (+)-chelidonine (IC50>200 μΜ), spallidamine (IC50= 11.6±1.1 μΜ, reversible mixed type I) N-trans-feruloyltyramine (IC50=20.7±0.9 μΜ, reversible mixed type I)

27,27

Epimedium koreanum Nakai (Berberidaceae)

Interfertility, cardiovascular disease, amnesia, lumbago, neurasthenia, arthritis, tonic, immune-modulatory diseases. anti-inflammatory, anti-osteoporosis, anti-oxidant, antidepressant and neuroprotective agent

 

Ethyl acetate extract (IC50= 35 μg/ml)

Prenylated flavonoids:

epimedokoreanin B (IC50=6.06 μΜ, reversible mixed type I)

5, 7, 4′-trihydroxy-8, 3′-prenylflavone (IC50 = of 6.28 μΜ, reversible mixed type I)

28-30

Thuja orientalis L. (Cupressaceae)

Rheumatism, diarrhea, chronic trachetis

Methanolic extract (IC50=5.68 mg/ml)

Flavonoids:

Cupressuflavone (IC50 = 8.09±0.92 μΜ), amentoflavone (IC50=1.27±0.16 μΜ), robustflavone (IC50= 1.33±0.21 μΜ respectively)

31

Herniaria glabra L. (Caryophyllaceae)

Diuretic disorders, cystitis, irritable bladder, urinary tract infections, urolithiasis

Plant Extract (7.35±1.59% HNE inhibition)

Saponin fraction (2.39±1.03% HNE inhibition)

Herniariasaponin 14 (HS4) (1.84±0.53% HNE inhibition)

8

Rhizophora mucrinata Lam. (Mangrove plant) (Rhizophoraceae)

Antidiabetic, antioxidant, anti-inflammatoryantimicrobial and anti-viralagent, anguna, dysentery, haematuria, ulcers, haemorrhage, diarrhea, nausea, fever, hypertension, constipation, menstruation disorders, leprosy, food agent

Methanolic leaf extract (4.58±0.04 mg CAE/g (catechin equivalent) , methanolic root extract (4.50±0.16 mg CAE/g (catechin equivalent), methanolic twig extract (4.68±0.08 mg CAE/g (catechin equivalent), ethyl acetate fruit extract (4.25±0.25 mg CAE/g (catechin equivalent)

32

Campylotropis hirtella (Leguminosae)

Amenorrhea, mestrorhagia, metrostaxis, gastric ulcers, benign prostate hyperplasia, food agent

Ethyl acetate extract (80% HNE inhibition at 100 μg/ml)

Isolated flavonoids:

(2R, 3R)-6-methyl-3΄-geranyl-2,3-trans-5,7,4΄-trihydroxy-flavonol (IC50 =17.9±1.5 μΜ,

(E )-3-(3-(3,7-dimethylocta-2,6-dienyl)-2,4-dihydroxyphenyl)-3,5,7-trihydroxy-chroman-4-one (IC50= 8.4±0.8 μΜ)

3΄-geranyl-5,7,2΄,4΄-tetrahydroxyisoflavanone (IC50=30.8±1.3 μΜ) 3(S)-2΄,4΄-dihydroxy-5,5΄dimethoxy-(6΄΄,6΄΄-dimethylpyanoi)-(2΄΄,3΄΄:7,6)-isoflavanon (IC50> 200 μΜ)

3΄-geranyl-5,7,2΄,5΄-tetrahydroxyisoflavone (IC50 > 200 μΜ)

16

Eriobotrya japonica (Loquat leaves)

Antioxidant, anti-onflammatory agent, treatment of chronic bronchitis and coughs

Terpenoid extract (IC50=3.26±0.56 μg/ml)

Isolated Triterpenoids:

Ursolic acid (IC50=8.49±0.42 μg/ml)

33,34

Flemingia Philippinensis (Legumes)

Rheumatism, improvement of bones density, food agent

Methanolic extract (IC50= 87 μg/ml)

Isolated prenylated isoflavones:

genistein IC50=51.4±0.5 μΜ, noncompetitive inhibition),

auriculasin (IC50=3.1±0.2 μΜ, competitive inhibition), 6,8-diprenylorobol (IC50=1.3±0.3 μΜ, competitive inhibition), 5,7,3΄,4΄-tetrahydroxy-2΄,5΄-di(3-methylbut-2-enyl) isoflavone (IC50=213.1±1.9 μΜ, competitive inhibition), flemiphilippinin A (IC50=8.3±0.4 μΜ, competitive inhibition), 5,7,3΄-trihydroxy-2΄-(3-methylbut-2-enyl)-4΄,5΄-(3,3-dimethylpyrano)isoflavone (IC50=22.4±0.7 μΜ, noncompetitive inhibition), 8-γ,γ-dimethylallylwighteone (IC50=6.0±0.3 μM, competitive inhibition), osajin (IC50=26.0±0.6 μΜ, competitive inhibition), flemingsin (IC50=12.0±0.4 μΜ, competitive inhibition), Isolated flavanones: flemichin D (IC50=5.3±0.5 μΜ, mixed type I inhibition), lupinifolin (IC50=13.3±0.1 μM, mixed type I inhibition), khonklonginol H (IC50=110.2±0.8 μΜ, mixed type I inhibition), Isolated chalcones: fleminchalcone C (IC50=62.1±0.5 μΜ, mixed type I inhibition), fleminchalcone A (IC50=76.6±0.9 μΜ, mixed type I inhibition), fleminchalcone B (IC50=53.2±0.2 μΜ, mixed type I inhibition) and a flavanol: 6,8-diprenyl-kaempferol (IC50=29.3±0.3 μΜ, mixed type I inhibition).

35-37

 

 

Table S2: Studied natural secondary metabolites for their inhibitory activity towards HNE.

Inhibitor

Chemical Family

Plant Source

IC50

Ref.

Luteolin

Flavonoids

 

12 μΜ

14

Chrysin

Flavonoids

 

6.7 μΜ

14

Naringenin

Flavonoids

 

Weak inhibition

14,38

Eriocitrin

Flavonoids

 

Weak inhibition

14

Gallic Acid Derivatives

Phenolic acids

 

High inhibition

39

Bornylcinnamic acid ester derivatives

Cinammic acid derivatives

 

1.6-6.9 μΜ

14,40

Cinammic esters

Cinammic acid dervatives

 

 

Potent Inhibitor

13,14,40

Caffeic acid

Cinammic acid derivatives

 

93 μΜ

5,13,38

Dicaffeoylquinic acid derivatives

Caffeic acid derivatives

Asteraceae Phangnalom rupestre

4.8-10 μΜ

3,41-43

3,5-di-O-caffeoylquinic acid

 

 

50% at concentration of 0.2 μΜ

44

Bornyl caffeate

Bicyclic caffeic acid derivative

 

1.6 μΜ

40

N-octylcaffeic acid

 

 

1 μΜ

14

Resveratrol (3,5,4΄-trihydroxy-trans-stilbene)

Stilbenes

 

31 μΜ and 12 μΜ

12,45

(-)-epigallocatechin-3-gallate

Catechins

Green tea

0.4μΜ and 25.3 μΜ

46

{3-[1-(tert-butyldimethylsiloxy)-ethyl]-4-oxo-1-[3, 4, 5-tris (benzyloxy) benzoyl]-azetidin-2-ylidene}-acetic acid ethyl ester

Monocyclic β-lactam derivatives

 

Weak inhibition

14

Genistein

Isoflavone

 

HNE release (99 μΜ when stimulated by Fmlp and 0.5 μΜ when stimulated by PAF

45

Diosmetin

O-methylated flavone

 

83 μΜ

14

Quercetin

Flavonoid

 

2.4 μΜ

14

Quercetin glycosides

Flavonoid glycosides

 

0.3-11.1 μΜ

14

Phloretin

Chalcone

 

>36.5 μΜ

14,47

Viscolin

Chalcone

 

9.48 μΜ

14,28

Agrimoniin

Elagittanins

 

0.9 μΜ

45

Pedunculagin

Elagittanins

 

2.8 μΜ

45

Ellagic acid

Phenolic dilactone

Tea, Red grapes, strawberries, blackberries

Potent inhibition (1.44 μg/ml)

88.6% inhibition at a concentration of 4.57 μg/ml

39,48

p-cymene

Monoterpene

Nigella Sativa seeds

25 μΜ

49

Thymoquinone

Monoterpene

Nigella Sativa Seeds

30 μΜ

49

Carvone

Monoterpene

Nigella Sativa Seeds

14 μΜ

49

Thymol

Monoterpene

Nigella Sativa Seeds

104 μΜ

49

 

 

 

18.88±5.21% at 10 μg/ml and 33.25±3.73% at 20 μg/ml

49

Carvacrol

Monoterpene

Nigella Sativa Seeds

12 μΜ

49

Ursolic acid

Pentacyclic triterpenes

 

88.47±2.96% at 1000 μΜ

4.4 μΜ

10,33,50,51

Oleanolic acid

Pentacyclic triterpenes

 

88.14±3.72% at 1000 μΜ

6.4 μΜ

2,10,11,50

Glycyrrhetinic acid

Pentacyclic triterpenes

 

75.20±2.89% at 1000 μΜ

51

Glycyrrhizin

Pentacyclic triterpenes

 

78.66±1.99% at 1000 μΜ

51

Betulinic acid

Pentacyclic triterpenes

 

82.41±1.37% at 1000 μΜ

51

Lupeol

Pentacyclic triterpenes

 

93.56±1.19% at 1000 μΜ

1.9 μΜ

51

Canopkyllol

Pentacyclic triterpenes

 

2.5 μΜ

51

Germacranolides

Sesquiterpene lactones

 

7->200 μΜ

52

4β,15-Epoxy-miller-9Z-enolide

Sesquiterpene lactones

 

7->200 μΜ

52

15-(3΄-Hydroxy)-methacryloyloxy-micrantholide

Sesquiterpene lactones

 

7->200 μΜ

52

15-(2΄,3΄-Epoxy)-isobutyryloxy-micrantholide

Sesquiterpene lactones

 

7->200 μΜ

52

15-(2΄-Hydroxy)-isobutyryloxy-micrantholide

Sesquiterpene lactones

 

7->200 μΜ

52

eupatoripikrin

Sesquiterpene lactones

 

7->200 μΜ

52

molepantin

Sesquiterpene lactones

 

7->200 μΜ

52

4β, 15-Epoxy-miller-9E-enolide

Sesquiterpene lactones

 

 

52

parthenolide

Sesquiterpene lactones

 

25% at 20μΜ

45,52

scandenolide

Sesquiterpene lactones

 

 

52

3-acetoxy-costunolide

Sesquiterpene lactones

 

7->200 μΜ

52

7-hydroxy-costunolide

Sesquiterpene lactones

 

7->200 μΜ

52

Guaianolides

Sesquiterpene lactones

 

7->200 μΜ

52

2-oxo-Guai-1(5)-en-12,8α-olide

Sesquiterpene lactones

 

7->200 μΜ

52

thieleanin

Sesquiterpene lactones

 

7->200 μΜ

52

eminensin

Sesquiterpene lactones

 

7->200 μΜ

52

Podachaenin

Sesquiterpene lactones

 

7 μΜ

52

Pseudoguaianolides

Sesquiterpene lactones

 

7->200 μΜ

52

11α,13-Dihydrohelenalin-methacrylate

Sesquiterpene lactones

 

7->200 μΜ

52

11α,13-Dihydrohelenalin-acetate

Sesquiterpene lactones

 

7->200 μΜ

52

Eudesmanolide

Sesquiterpene lactones

 

7->200 μΜ

52

1β-Acetoxy-4α-hydroxy-15-isobutyryloxy-eudesma-11(13)-en-12,8β-olide

Sesquiterpene lactones

 

7->200 μΜ

52

11α, 13- Dihydrohelenalin acetate

Sesquiterpene lactones

 

-2-2%

52

Eudesmanolides

Sesquiterpene lactones

 

-2-2%

52

alantolactone/isoalantolactone 3:1

Sesquiterpene lactones

 

-2-2%

52

Bolinaquinone

Sesquiterpene

Dysidea spec.

5.3 μΜ

52

Aminoquinone dysidine

Sesquiterpenes

Dysidea spec.

1.3 μΜ

52

Dysidone A:Dysidone B (1:1)

Sesquiterpenes

Dysidea spec.

10 μΜ

52

Dehydrocostic acid

Sesquiterpenic acid

Inula Viscosa

Potent inhibition

52

Erucic acid (22:1, cis-13)

Fatty acids

 

0.45 μΜ

38

Oleic acid (18:1, cis-9)

Fatty acids

 

5 μΜ

38

Stearic acid (18:00)

Fatty acids

 

10 μΜ

38

Palmitic acid (16:00)

Fatty acids

 

15 μΜ

38

Eicosapentaenoic acid (20:5)

Fatty acids

 

No inhibition

38

Docosahexaenoic acid (22:6)

Fatty acids

 

No inhibition

38

Myristic acid (14:00)

Fatty acids

 

35 μΜ

38

Pentadecanoic acid (15:00)

Fatty acids

 

25 μΜ

38

Heptadecanoic acid (17:00)

Fatty acids

 

>50 μΜ

38

Nonadecanoic acid (19:00)

Fatty acids

 

>50 μΜ

38

Arachidic acid (16:01, cis-9)

Fatty acids

 

20 μΜ

38

Behenic acid (22:00)

Fatty acids

 

30 μΜ

38

Palmitoleic acid (16:1, cis-9)

Fatty acids

 

20 μΜ

38

Linoleic acid (18:2, cis-9,12)

Fatty acids

 

10 μΜ

38

Linolenic acid (18:3, cis-9,12,15)

Fatty acids

 

15 μΜ

38

γ-linolenic acid (18:03. cis-6,9,12)

Fatty acids

 

15 μΜ

38

Myrtucommulone

Acylphloroglucinols

Myrtus Communis leaves extracts

(0.4-3.8 μM)

14

Semimyrtucommulone

Acylphloroglucinols

Myrtus Communis leaves extracts

(0.4-3.8 μM)

14

Hyperforin

Acylphloroglucinols

Hypericum Perforatum extracts

(0.4-3.8 μM)

14

 

Table S3: Plants, extracts and isolated compounds that have been studied for their inhibitory properties towards Hyaluronidase.

Plant

Medicinal use

Inhibition towards Hyal

Ref.

Chamaerhodos erecta

Treatments againsts hepatic disorders, rheumatism, scurvy, high temperature, meal poisong, scorbutus, arthritis, tachycardia, face and foot swelling and hemorrhage

Aerial part butanolic extract potent Hyal inhibition

(2R,3S)-3,4-dihydro-2-(3,4-dihydroxyphenyl)-2H-chromene-3,5,7-triol (IC50= 0.842 mM), 1,2,3,4,6-penta-O-galloyl-b-D-glucopyranoside (IC50=0.595 mM), eugeniin (IC50=0.509 mM),

1,2,6-tri-O-galloyl-b-D-glucopyranoside (IC50=0.792 mM),

potentillin (IC50=0.890 mM), agrimoniin (IC50=0.578 mM)

rosmarinic acid (IC50=1.363 mM)

53

Chamaerhodos Altaica

Antiinflammatory properties, skin care cosmetics agetn

Aerial part aqueous extract potent Hyal inhibition

53

Dracocephalum foetidum

Antimicrobial properties, ant-hyalurondase agent

Isolated compounds:

(R)-a-[[(2E)-3-[4-[[(1Z)-1-carboxy- 2-(3-hydroxy-4-methoxyphenyl)ethenyl]oxy] -3-hydroxyphenyl]-1-oxo-2-propen-1-yl]oxy]-3,4-dihydroxy-benzenepropanoic acid (IC50=0.22± 0.01 mM), rosmarinic acid (IC50=0.75±0.04 mM), acacetin-7-O-(3,6-O-dimalonyl)-b-D-glucopyranoside (IC50= 0.25±0.01 mM), acacetin-7-O-(3-O-malonyl)-b-D-glucuronopyranoside (IC50=0.19±0.02 mM), acacetin-7-O-b-D-glucuronide (IC50=0.55±0.14 mM), apigenin 7-O-(6-malonyl-beta-D-glucoside) (IC50=0.99±0.12 mM), apigenin 7-O-b-glucuronide (IC50= 0.56± 0.07 mM) and luteolin-7-O-b-D-glucuronide (IC50= 0.79±0.04 mM).

54

Gaultheria procumbens L. (Eastern teaberry)

Anti-inflammatory, analgesic properties, treatment against acute and chronic prostatitis, rheumatoid arthritis, chronic tracheitis, swelling pain

Ethyl acetate extract (IC50= 21.83±0.82% at 100 μg/ml)

55-57

Oenothera biennis L.

Anti-diabetic, anti-inflammatory, antibacterial and antifulgal properties, Treatment against hyperlipidemia, atherosclerosis, atopic dermatitis, endothelial dysfunction, peptic ulcer, ulcerative colitis, Crohn's disease

Aerial part methanolic extract (potent Hyal inhibition)

58

Payena Dasyphylla Bark

Anti-inflammatory and antioxidant properties

Methanolic extract (IC50= 91.63% at 100 μg/ml)

58,59

 

 

Ethyl acetate extract (Hyal-1 and Hyal-2 inhibition at 100 μg/ml)

 

Borago officinalis L.(Borage) (Boraginaceae)

Antioxidant, antispasmodic, antihypertensive, antipyretic, aphrodisiac, demulcent, diuretic properties, treatment against asthma, bronchitis, cramps, diarrhea, palpitations, kidney ailments

Leaves extracts (IC50=71.6±5.4%)

60

Spinacia oleracea L. (Spinach) (Chenopodiaceae)

Antioxidant, free radical scavenging, anti-cancer, anti-obesity, hypoglycemic and hypolipidemic properties, high nutraceutical value

Leaves extarcts (IC50= 92.3±1.8%)

60

Lactuca sativa (Compositae)

Antioxidant, anticancer agent, neutraceutical agent

Leaves (IC50=110.5±0.3%)

60

Arctium lappa L. (Lettuce) (Compositae)

Anti-diabetic, anti-obesity, anti-tumor properties

Roots (no Hyal inhibition)

60

Chrysanthemum coronarium L. (Compositae)

Anti-inflammatory, diuretic, nutritive, bllod purification, fluid retention properties, cosmetic agent

Leaves (no inhibition)

60

Lepidium sativum L. (Cress) (Gruciferae)

Analgesic, anti-spasmodic, hepatoprotective, anti-diarrhoeal, antioxidant, anti-inflammatory, diuretic and galactagogue properties

Leaves (IC50=89.4±3.0%)

60

Eutrema wasabi Maxim. (Japanese horseradish stem ) (Gruciferae)

Anti-inflammatory, anti-microbial, anti=platelet, anticancer, antioxidant and antidiabetic agent, high nutraceutical value

Stem (IC50=91.4±1.1%)

60

Rapharus sativus L. (Japanese radish) (Gruciferae)

Antioxidant, antimicrobial properties. Treatment against respiratory urinary, gastrointestinal systems disorders, female and male infertilit, anemia, skin disorders

Root (IC50=107.2±2.1%).)

60

Brassica oleracea L. (Gabbage)

(Gruciferae)

Antioxidants and anticancer properties

Leaves (no Hyal inhibition)

60

Brassica campestris L. (Chinese cabbage)

Leucorrhoea, menstrual disorders, gleets, body weakness, internal pain

Leaves (no Hyal inhibion)

60

Melissa officinalis L. (Lemno balm)

(Labiatae)

Hypoglycemix, hepatoprotective, antimicrobial, antidepressant, hypnotic and sedative agent, Treatment against breast cancer and colon carcinoma

Food agent, uses in aromatotherapy

Leaves (IC50= 1.0±0.3%),

60

Mentha piperita L. Peppermint)

(Labiatae)

 

Biliary disorders, dyspepsia, enteritis, flatulence, gastritis, intestinal colic, spams of the bile duct, gallbladder and gastrointestinal tract

Leaves (IC50=26.5±14.4%)

60

Perilla ocymoides L. (Perilla) (Labiatae)

 

 

Treatment against cold, headache, cough, abdominal fullness and distention, poisoning from fish and crabs, flavor agent

Leaves (IC50=80.5±4.4%),

60

Rosmarinus officinalis L. (Rosemary) (Labiatae)

Antibacterial, antioxidant, antifungal and antitumor agent, Food agent, cosmetic agent

Leaves (IC50=35.6±13.2%)

60

Salvia officinalis L. (Sage) (Labiatae)

 

Antioxidant, anti-inflammatory, hypoglycemic, antibacterial, antitumor agnet, Treatment against Alzheimer's disease, Flavor agent, cosmetic agent

Leaves (IC50=15.5±10.6%)

60

Satureja hortensis L. (summer savoy) (Labiatae)

Antioxidant, antimicrobial, antiparasitic, pesticidal, anti-inflammatory, antinociceptive, hepatoprotective, anticancer agent.

Leaves (IC50=30.8±8.1%),

60

Ocimum basilicum L. (Sweet basil) (Labiatae)

 

Antioxidant, anti-spasmodic, anti-diabetic, anti-bacterial, anti-fungal agent. Control of blodd pressure, treatments against coughs, headaches, infections, stomach aches and constipation.

Leaves (IC50=60.2±7.1%)

60

Majorana hortensis Moench (Sweet marjoram) (Labiaatae)

Antioxidant, antiproliferative, antimutagenic, antimicrobial agent. Control of platelet aggregation. Treatments against cough, rheumatism, indigestion, toothache. Treatment against gastric and cardiovascular disorders,

Leaves (IC50=23.5±7.2%)

60

Thymus vulgaris L. (Thyme) (Labiatae)

Antioxidant, antimibrobial, anti-inflammatory, antifungal agent. Treatment against acne and other skin disorders, anxiety, laryngitis, coughs, liver disfunction, menstrual cramps, premenstrual syndrome, infections of urinary tract

Leaves (IC50=35.5±12.8%).=

60

Vicia faba L. (Leguminosae)

Antioxidant, anti-fungal, anti-diabetic, anticancer agent.

Seeds (IC50=90.0±2.1%)

60

Pisum sativum L. (Garden pea) (Leguminosae)

Antioxidant, antidiabetic, antifungal, anti0inflammatory, antilipidemic and anticancer properties. Cosmetic agent

Pods (no inhibition)

60

Vigna radiata R. Wilez. (Mung bean) Lequminosae)

Antioxidant, anti-inflammatory, antibacterial, antitumor, hypolipidemic, antidiabetic, detoxication, and hepatoprotective agent, Cosmetic agent, food agent

Sprout (IC50=94.1±2.1%)

60

Phaseolus vulgaris L.(Snap bean) (Leguminosae)

Analgesic, anti-obesity, antibacterial, anticancer, antidiabetic, antifertility, anti-inflammatory, antioxidant, hepatoprotective, hypolipidemic, litholytic agent. Inhibitor of trypsin and α-amylase.

Pod (IC50=89.1±2.1%)

60

Rheum rhaptonticum L. (Polygonaceae)

Antioxidant, antimicrobial, antifungal, anti-inflammatory agent

Stalk (IC50=93.5±0.7%),

60

Fragaria Xananassa Duch.(Strawberry) (Rosaceae)

Antioxidant, cholesterol lowering, anticancer, antioxidant and anti-againg agent. Treatment against oral diseases and disorders of urinary tract. Treatment against leukemia

Root (IC50=87.6±2.7%)

60

Daucus carota L. (Carrot) (Umbelliferae)

Antioxidant, anticancer, ati-diabetic-anti-hypertensive,hepatoprotective, wound healing, antibacterial, antifungal, cardioprotective, anti-inflammatory, analgesic, fertility properties.

Root (IC50=104±1.7%),

60

Apium graveolens L. (Celery) (Umbelliferae)

Anti-diabetic, antifungal, anti-inflammatory, anticoagulant agent, reatment against cardiovascular and gastrointestinal disorders

Stalk (IC50=108.8±3.9%)

60

Coriandrum sativum L. (Coriander) (Umbelliferae)

Antioxidant, antifungal and antibacterial agent, Treatment against cognition, dementia, anxiety, flavoring agent, cosmetic agent

Leaves (no inhibition)

60

Anethum graveolens L. (Dill) (Umbelliferae)

Antimicrobial, anti-inflammatory, analgesic, hyperlipidemic, agent, treatments of gastrointestinal disorders, treatments against disorders of the reproductive system

Leaves IC50=88.1±2.8%)

60

Foeniculum vulgare Mill. (Fennel) (Umbelliferae)

Antifungal, antibacterial, antioxidant agent

Stalks (IC50=94.1±1.5%)

60

Petroselinum crispum Nym. (known as Parsley)

Antimicrobial, hypotensitive, diuretic, laxative and antispasmolitic agent

Leaves (IC50=88.1±3.4%)

60

Capsicum anmuum L. (Pepper) (Solanaceae),

Antioxidant, antimicrobial, antitumor properties. Treatment of rheumatism, stiff joints, bronchitis, chest colds, arthritis, heart arrhthmias, osteoarthritis

Fruit (IC50=79.5±10.5%)

60

Solanum melongena L. (Eggplant) (Solanaceae).

Antihaemorrhoidal, astringent and hypotensive properties. Reduction of blood cholesterol levels, antidote to poisonous mushrooms, wound healing agent, treatment of intestinal hemorrhages, piles and toothache.

Fruit (no inhibition)

60

Lycopersicon esculentum mill.(Tomato) (Solanaceae)

Antioxidant, antimicrobial, antidiabetic, anti-inflammatory. Treatment of dysentery, back pain, rheumatism, lowering cholesterol, rheumatism, proper functioning of brain

Fruit (no inhibition)

60

Colocasia esculenta Schott (Taro) (Araceae)

Antimicrobial, antihepatotoxic, antidiabetic, anti-lipid, anti-inflammatory, antifungal, antimetastatic properties

Tuber extracts (no Hyal inhibiton)

60

Cucumis Sativus L. (Cucumber) (Cucurbitaceae)

Antioxidant, antimicrobial, anti-aging properties. Glycemic reduction, improving immunity and boosting metabolism properties

Fruit (no Hyal inhibiton)

60

Cucurbita maxima Duch. (Pumpkin) (Cucurbitaceae)

Antioxidant, antimicrobial, anticancer agent. Control of blood glucose levels. Treatmens of urinary tract diseases.

Fruit (no Hyal inhibition)

60

Asparagus officinalis L. (Asparagus) (Liliaceae)

Antibiotic, diuretic, antispasmodic, anticancer, laxative, sedative, aperient properties. Treatment against cardiovascular diseases.

Sprout (no Hyal inhibition)

60

Allium tuberosum Rottler (Chinese chive)(Liliaceae)

Treatment against asthma, abdominal pain, diarrhea and diabetes. Aphrodisiac agent

Leaf (no Hyal inhibition)

60

Allium schoenoprasum L. (Chive) (Liliaceae)

Antioxidant properties

Leaf (no Hyal inhibition)

60

Allium sativum L. (Garlic) (Liliaceae)

Wound healing, anticancer, antioxidant, anti-inflammatory antidiabetic properties. Treatment against skin, disorders, urinary diseases, kidney stone, epilepsy, cataract. asthma, arthritis, bronchitis, chronic fever e.c Spice and flavoring agent

Buld (no Hyal inhibition)

60

Allium cepa L. (Onion) (Liliaceae)

Antioxidant, anti-inflammatory, antimicrobial, analgesic, anti-diabetic, anti-hypertensive, hypolipidemic and immunoprotective properties.

Buld (no Hyal inhibition)

60

Allium fistulosum L. (Welsh onion ) (Liliaceae)

Anti-microbial, anti-fungal, anti-termite, wound healing agent. Treatment against common cold, eyesight disorders, headache, heart disorders. Reduces serum lipid concentrations and fat accumulation, food agent

Leaf (no Hyal inhibition)

60

Abelmoschus esculentus Moench (Okra) (Malvaceae)

Antioxidant, antitumor properties. Treatment against type 2 diabetes, cardiovascular disease and digestive disorders

Pod (no Hyal inhibition)

60

Zingiber officinale Rosc. (Ginger ) (Zingiberaceae)

Antioxidant, anticancer, antimicrobial, antidiabetic, hepatoprotective, nephroprotecyive, immunomodulatory, anti-inflammatory, larvicidal, analgesic properties

Root (no Hyal inhibition)

60

Zingiber mioga Rose (Mioga ginger) (Zingiberaceae)

Anti-inflammatory, antimicrobial, anticancer, anti-platelet aggregation properties, treatment against rheumatism and coughing

Flower (no Hyal inhibition)

60

Areca catechu

Skin disorders

Ethanolic extract (>57% Hyal inhibition at 250 μg/ml and >82% at 500 μg/ml. IC50=330 μg/ml)

61

Glycyrrhiza uralensis

Skin disorders

Plant extract (10-78% Hyal inhibition at a range of 100-1000 μg/ml, IC50=210 μg/ml)

61

Althaea officinalis (Marshmellow)

Pharygeal irritation, gastrointestinal disorders

Extracts (IC50=7.7 mg/ml for Hyal-1)

scopoletin-7-O-α-L-rhamnopyranosyl-(1″→6′)-β-D-glucopyranoside (IC50=84%)

hypolaetin-8-O-β-D-glucopyranosyl-(1‴→4″)-β-D-glucuronopyranoside (IC50=73%)

4′-O-methylhypolaetin-8-O-β-D-(2″-O-sulfo)glucopyranoside (IC50=73%)

4′-O-methylhypolaetin-8-O-β-D-(2″-O-sulfo)glucopyranoside (IC50=83%)

62

Allium sativum L. (Garlic)

Metabolic disorders, food spice

quercetin (IC50=23.0 mM),

isoquercitrin (quercetin 3-O-β-D-glucopyranoside) (IC50=20.9 mM) reynoutrin (quercetin-3-O-β-D-xylopyranoside) (IC50=22.1 mM)

kaempferol (IC50=36.3 mM)

astragalin (kaempferol 3-O-β-D-glucopyranoside) (IC50=26.5 mM)

isorhamnetin (IC50=55.4%)

isorhemnetin 3-O-β-D-glycopyranoside (IC50=50.4 mM)

63

Hennae folium

Anti-inflammatory, antidiarrhetic properties, skin protective agent

(IC50=no reported, Inhibition 0%) at 10 mg/ml

64

Equiseti herba

Anti-inflammatory, antibacterial properties, Treatment against urinary tract infections

(IC50=1.5 mg/ml, inhibition 100%)

64

Betulae folium

 

Anti-inflammatory properties, treatmenst against arthritis

(IC50=no reported, Inhibition 61%)

64

Ononidis radix

Anti-inflammatory and diuretic properties

(IC50=1.7 mg/ml, Inhibition 81%)

64

Buchu folium

Anti-inflammatory, treatment against urinary tracy infections and kidney disorders

(IC50=no reported, Inhibition 21%)

64

Maydis stigma

Antioxidant, diuretic agent, reduces hyperglycemia, anti-fatigue and anti-depressant properties

(IC50= no reported, Inhibition 4%)

64

Malvae sylvestris flos

Anti-inflammatory, diuretic properties, Treatment against circulatory, central nervous system, dermatological, digestive, gynecological and metabolic disorders

(IC50=1.4 mg/ml, inhibition 100%)

64

Solidaginis herba

Anti-inflammatory, antibacterial, treatments against the infections of the urinary tract

(IC50=4.9 mg/ml, Inhibition 100%)

64

Chebulae fructus

Anti-inflammatory, treatments against diarrhea, bleeding, chronic bronchitis, chronic laryngitis, ulcers, bacillary dysentery and tonsillitis

(IC50=no reported, Inhibition 0%)

64

Coptis rhizome

Anti-inflammatory properties, treatments against typhoid, bacillary dysentery, tuberculosis, pertussis, epidemic cerebrospinal meningitis

(IC50=no reported, Inhibition 0%)

64

Cranberry

Anticancer, diuretic, antipyretic, antiseptic, antidiabetic properties, treatment against chronic fatigue syndrome, pleurisy and scurv

(IC50=no inhibition, Inhibition: 10%),

64

Althaeae radix

Anti-inflammatory, diuretic, astringent, cooling, febrifuge, expectorant, emmenagogue, demulcent agent, Tretment against skin, kidney and uterus disorders

(IC50=no inhibition, Inhibition: 60%),

64

Hydrastis rhizoma

Anti-inflammatory agent, Treatment against circulatory, cardiovascular, central nervous system, dermatological, digestive, gynecological, metabolic, respiratory and urinary disorders

(IC50=no inhibition, Inhibition: 7%),

64

Mahonia radix

Anti-inflammatory, wound healing agent, treatment against tuberculosis, dysentery, periodontitis, eczema, pharyngolaryngitis

(IC50=no inhibition, Inhibition: 26%).

64

Palaquium gutta

Anti-inflammatory agents, treatment against mouth disorders

Methanolic bark extract: (IC50=88.2%),

59

Pouteria obovatta

Anti-inflammatory, treatments against skin disorders

Methanolic bark extract: (IC50=90.47%)

59

Payena dasyphylla

Anti-inflammatory agent, Treatment against arthritis

Methanolic bark extract: (IC50=91.63%)

59

Uncaria villosa

Anti-inflammatory and antioxidant properties

Methanolic bark extract: (IC50=55.20%)

59

Palaquium qutta

Anti-inflammatory agent, treatment against mouth disorders

Leaf extract: (IC50=51.35%)

59

Pauteria oobova

Anti-inflammatory, treatment against skin disorders

Leaf extract: (IC50=55.63% )

59

Onion

Antioxidant, antibacterial and anti-inflammatory agent, nutraceutical agent

Quercetin (IC50=27% at 750 μΜ)

quercetin 3,4 diglucoside ((IC50=38% at 750 μΜ)

63

Lythrum salicaria L.

(Lythraceae)

Anti-inflammatory agent, treatment against dysentery, eczema, haemorhoidal disease, chronic intestinal catarrh, periodontosis, gingivitis and varicose veins

(IC50=64.9±6.3% at 10 μg/ml)

Flower extract (IC50=94.4±0.6% at 20 μg/ml)

Isolated elagitannins:

Salicarinin A (IC50=1.06±0.1 μΜ)

Salicarinin (IC50=1.6±0.2 μΜ)

Salicarinin C (IC50=2.5±0.2 μΜ)

Vescalagin (IC50=3.1±0.2 μΜ)

Castalagin (IC50=3.1±0.2 μΜ)

15

Geum urbanum L.

(Rosaceae)

Treatment against periodontitis stomach disorders, anti-bleeding, anti-inflammatory properties for gums and mucous membranes

(IC50=25.6±5.1% at 10 μg/ml)

15

Rubus idaeus L.

(Rosaceae)

Antioxidant, antibacterial, antioxidant, antitumor properties, treatment against uterous disorders

(IC50=21.2±2.0% at 10 μg/ml)

15

Rubus fruticosus L.

(Rosaceae)

 

Antibacterial, antinociceptive, antiproliferative, analgesic properties

(IC50=12.5±6.8% at 10 μg/ml)

15

Potentilla erecta L Raeusch (Rosaceae)

 

Antidiarrheal, anti-ulcerogenic, hemostatic, antihemorrhoidal, wound- healing, skin photoprotecting, free radican scavenging agents

(IC50=5.8±4.1% at 10 μg/ml)

15

Filipendula ulmaria (L) (Rosaceae)

 

Anti-inflammatory, antipyretic, analgesic, anti-rheumatic and astringent properties

(no inhibition at 10 μg/ml)

15

Maxim Potentilla anserine L. (Rosaceae)

Wound healing, homeostatic agent, Treatment against tooth ache, dysentery, ulcers of the mouth, inflammations of the throat

(no inhibition at 10 μg/ml)

15

Agrimonia eupatoria L. (Rosaceae)

Antioxidant, anti-inflammatory, astringent and diuretic properties

(no inhibition at 10 μg/ml)

15

Geranium pratense L. (Geraniaceae)

Analgesic, febrifuge, anti-inflammatory agent, Treatment against inflammation of the lungs, influenza, pain and swellings of the limbs

(IC50=16.1±3.6 at 10 μg/ml)

15

Geranium robertianum L. (Geraniaceae)

Anti-inflammatory, antibacterial, antidiabetic, anti-cancer, antiallergic, diuretic and haemostatic properties

(IC50=7.2±3.8% at 10 μg/ml)

15

Aesculus hippocastanum L. (Hippocastanaceae)

Anti-inflammatory agent, treatment against venous bites, bronchitis, dysentery and hemorrhoids

(no inhibition at 10 μg/ml)

15

Eleutherococcus spp. Inflorescences

Antioxidant and anti-inflammatory agent

E. gracilistylus (16.4±0.05% Hyal inhibition), E. giraldii (60.7±0.01%, Hyal inhibition), E. senticosus (57.5±0.05% Hyal inhibition).

65

Humulus Lupulus L. (Hop Flowers)

Inhibition of bone resorption. Nitric oxide production. Anticancer agent. Estrogenic activity, aromatic agent in beer

quercetin (IC50= 54.63± 3,16% at 200 μΜ), rutin (IC50=61.87±5.48% at 200 μΜ), kaempferol (IC50=50.75±3.78% at 200 μΜ) and isorhamnetin (IC50=50.75±3.78% at 200 μΜ), β-sitosterol (no inhibition) daucosterol (no inhibition)

66

Ononis spinosa L. (Restharrow roots) (Fabaceae)

Inflammations of the urinary tract

Dickloromethane extract (IC50=0.19 mg/ml)

Isolated subractions: (86%& and 92% at 1 mg/ml)

Sativanone (IC50=150.70 μΜ at 250 μΜ)

67

Pothos scandens L. (Araceae)

Skin disorders, asthma, cancer

Pothobanoside A (46.7% Hyal inhibition at 200 μΜ)

58,68

Phyllanthus muellerianus Exell (Kuntze) (Euphorbiaceae)

Healing agent against wounds and other infections

Aqueous extracts of the stem bark show antimicrobial character against Streptococcus and Clostridium species

Hydroalcoholic extract (1:1 v/v) (IC50= 80 μg/ml of Hyal-1)

Hydroalcoholic extracts fractions: (57.1% and 66.5% inhibition of Hyal-1) Three hydroalcoholic subractions (94%, 100% and 84% Hyal-1 inhibition at a concentration of 1 mg/ml)

Isolated constituents:

Chebulanin (IC50=132 μΜ)

Mucic acid (43.8% Hyal-1 inhibition at 250 μΜ) Furosine isomers (21.3% Hyal-1 inhibition at 250 μΜ)

Quercetin rutinoside ( 21.3% Hyal-1 inhibition at 250 μΜ)

kaempferol (8.9% Hyal-1 inhibition at 250 μΜ)

69,70

Keiskea japonica

Lamiaceae)

Antioxidant, anti-inflammatoyry, antidiuretic properties

80% Acetone extract (IC50=608 μg/ml)

Isolated constituents:

shimobashiric acid C (88.7% Hyal inhibition at 596 μΜ)

rosmarinic acid (86.5% Hyal inihibition 309 μΜ) acacenin7-O-β-D-glucuropyranoside (86.5% Hyal inhibition at 267 μΜ)

 

71

Clethra barbinervis (Lamiaceae)

Anti-inflammatory, anti-allergic, anti-aging properties

Aqueous extract (88.6% Hyal inhibition at 2.0 mg/ml)

Isolated constituents: epicatechin (IC50= 0.94 mM)

triterpene saponins:

ryobusaponin B (IC50=1.25 mM), ryobusaponin C (IC50=0.68 mM)

hemsganoside B (IC50 =0.82 mM)

72

Barathranthus nodiflorus

Antioxidant and anti-inflammatory properties, free radical scavengers

Ethanolic bark extracts (IC50=42.31±2.00 %)

73

Diospyros ebenum

Antioxidant and anti-inflammatory properties, free radical scavengers

Ethanolic bark extracts (IC50= 41.60±1.18 %)

 

73

Acronychia pedunculata

Antioxidant, antibacterial and anti-inflammatory properties, free radical scavengers

Ethanolic bark extract (IC50= 36.60±1.02 %)

73

Flacourtia indica

Anti-inflammatory, antioxidant, diuretic properties, Treatment against rheumatism

Ethanolic plant extract (IC50=36.67±2.23 %).

73

Prismatomeris tetrandra (Roxb.) K. Schum

Wounds, bronchitis, snakebites

Ursolic acid (IC50=103.18±1.70 μΜ), 3β, 19, 23-trihydroxyurs-12-en-28-oic acid (286.95±10.28 μΜ) and 3β-acetylolean-12-en-28-oic acid (1466.5±2.37 μΜ).

 

74

Scilla scilloides Druce (Liliacease)

Medicinal agent for blood circulatory activation, dermal disorders, antidote, antimicrobial, anticancer

Ethyl acetate bulb extract (IC50= 169 μg/ml)

Homoisoflavones:

Scillavone B (IC50=748 μΜ)

3-(3, 4-Dihydroxybenzylidene)-5,7-dihydroxy-6-methoxy—chroman-4-one (IC50 =887 μΜ)

75

Cimicifuga Rhizoma (mixture of the Rhizomes of Cimicifuga dahurica and C. heracleifolia)

Antipyretic, analgesic, would healing agent

Cimicifugic acids 50% Hyal inhibition at <200 μΜ

76,77

Gaultheria procumbens L. (Estern teaberry, checkerberry) (Ericaceae)

Northern traditional treatment

Chloroform extract (IC50=282.15±10.38 μg/ml) which was 1.3 time)

Terpenoid constituents oleanolic acid (10.11% and ursolic acid (28.82% )

55-57

Clitoria Ternatea L. (Butterfly pea) (Fabaceae)

Nervous system disorders (stress, anxiety, depression etc)

Methanolic (IC50 =18.08 ± 0.46 μg/ml)

Ethyl acetate (IC50 =28.01 ± 0.48 μg/ml)

n-butanolic (IC50 =38.84 ± 0.41 μg/ml)

10,78,79

Takuran (Lamiaceae)

Menstrual disorder, menstrual cramps, cardiovascular diseases, anti-allergic agent

Clinopodic acid C (IC50=80.1 μΜ), Lycopic acid A (IC50=134 μΜ), Clinopodic acid E (IC50=82.8 μΜ) and Lycopic acid B (IC50=141 μΜ). Rosmarinic acid (IC50=309 μΜ) Scizotenuin A (IC50=241 μΜ).

 

80

Meehania urticifolia (Makino ) (Lamiaceae)

Anti-inflammatory and antibacterial properties

Two isomers of rosmarinic acid (IC50=275 μΜ and 183 μΜ)

Rosmarinic acid (IC50=164 μΜ)

81

Carissa carandas (Apocynaceae)

Antipyretic, analgesic, anti-rheumatic, anti-inflammatory, anti-diabetic agent etc.

Steroid fraction of the plant's extract (IC50 = 5.19 mM)

82

Triphala guggulu (Combination of three fruits: Phyllanthus emblica (amalaki or TI), Termilaia chebula (haritki or T2) and Terminalia belerica (bibhitaki or T3)

Wound healings, ear-nose-throat system disorders

Hydroalcoholic extracts: (84.60±8.71%) of Hyal at a concentration of 4 mg/ml)

Aqueous extract: (85% Hyal inhibition at 0.10 mg/ml)

Separate constituents:

P. emblica (T1) (100% Hyal inhibition at 0.30 mg/ml)

T. chebula (T2) (100% Hyal inhibition at 15 mg/ml)

T. belleirca (T3) (no efficient Hyal inhibition)

(T1): (T2): (T3) 1:1:1 (100% Hyal inhibition at 0.30 mg/ml)

83

Eleutherococcus Maxim. Genus

Medicinal agents, dietary agents

Species: E. gracilistylus (IC50= 16.4±0.05%),

E. giraldii (IC50= 60.7±0.01%)

E. senticocus (IC50=57.5±0.05%)

65

Eisenia bicyclis (Brown alga)

Antioxidant agent, food agent

8,8΄- bieckol (IC50=40 μΜ)

Dieckol (IC50= 120 μΜ)

Phlorofucofuroeckol A (IC50= 140 μΜ)

Acetylated derivatives of 8,8΄-bieckol (IC50= 15.1% )

84,85

Clinopodium gracile (Lamiaceae)

Anti-inflammatory, antitumor, antihyperglycemic properties, anti-hyaluronidase agent

Clinopodic acid J (IC50=206 μΜ), Clinopodic acid K (ΙC50=63 μΜ), Clinopodic acid L (IC50=26 μΜ), Clinopodic acid M (IC50=19 μΜ), Clinopodic acid N (IC50=161 μΜ), Clinopodic acid O (IC50=66 μΜ), Clinopodic acid P (IC50=25 μΜ), Clinopodic acid Q (IC50=165 μΜ), Rosmarinic acid86 (IC50=226 μΜ), Clinopodic acid I86 (IC50=112 μΜ), Clinopodic acid E86 (IC50=40 μΜ), 8-epiblechnic acid87 (IC50=653 μΜ)

Lithospermic acid (IC50=36μΜ),

Salvianolic acid B (IC50=107 μΜ), Salvianolic acid A (IC50=206 μΜ), Cosmosiin (IC50>1000 μΜ)

apigenin-7-O-(6-O-malonyl)glucoside1 (IC50=360 μΜ)

apigenin-7-O-rutinoside<sup>88</sup><sup>88</sup><sup>88</sup><sup>88</sup><sup>88</sup><sup>88</sup><sup>88</sup><sup>88</sup><sup>88</sup><sup>88</sup><sup>88</sup><sup>88</sup> (IC50>1000)

apiin (IC50=533 μΜ)

luteolin-7-O-glucoside (IC50=695 μΜ)

luteolin-7-O-(6-O-malinyl)glucoside (IC50=324 μΜ)

naringenin-7-O-rutinoside (IC50>1000 μΜ)

89

Canavalia gladiate DC (Red sword beans of no fermentation)

Anti-inflammatory and antioxidant properties

IC50=35.64±0.44% Hyal inhibition at a concentration of 5 mg/ml

IC50=45.73±0.78% Hyal inhibition at a concentration of 10 mg/ml

IC50=76.08±0.12% Hyal inhibition at a concentration of 25 mg/ml

58

Canavalia gladiate DC (Red fermented sword beans)

Anti-inflammatory and antioxidant properties

IC50=39.28±0.59% Hyal inhibition at a concentration of 5 mg/ml

IC50=46.64±1.18% Hyal inhibition at a concentration of 10 mg/ml

IC50=77.37±0.19% Hyal inhibition at a concentration of 25 mg/ml

58

 

Table S4: Studied natural secondary metabolites for their inhibitory potency towards Hyaluronidase.

Inhibitor

Chemical Family

Source

IC50

Ref.

Glycyrrhizin

Triterpenes

 

IC50=0.440 mM, Hyal B (Streptococcus agalactiae) inhition

IC50=0.455 mM rHyal B (recombinant Hyal from S. agalactiae) inhibition

84

Glycyrhetinic acid

Triterpenes

 

IC50=0.060 mM Hyal B (Streptococcus agalactiae) inhibition

IC50=0.080 mM rHyal B (recombinant Hyal from S. agalactiae) inhibition

84

Gypsophila saponin 2

Trieterpenoid Saponin glucosides

 

IC50=108 μΜ Human Hyal-1

64

SA1657

Trieterpenoid Saponin glucosides

 

IC50= 371 μΜ Human Hyal-1

64

SA1641

Trieterpenoid Saponin glucosides

 

IC50=177 μΜ Human Hya;-1

64

Glycyrrhizinic acid

Triterpenes

 

IC50=177 μΜ Human Hual-1 inhibition

64

β-caryophyllene

Essential oils

Melaleuca leucadendron Linn. Essential oils extract

IC50= 4.17 μg/ml

 

90

1.8-cineol

Essential oils

Melaleuca leucadendron Linn Essential oils extract

1.17 mg/ml

90

Naringenin

Flavonoids

 

IC50=9.58±0.25% at 200 μΜ

91

7-O-tert-butoxycarbonylmethyl naringenin

Flavonoid derivatives

 

IC50=30.68±0.21% at 200 μΜ

91

7-O-butyl naringenin

Flavonoid derivatives

 

IC50=44.84±0.28% at 200 μΜ

91

7-O-(a-methoxycarbonyl)benzyl naringenin

Flavonoid derivatives

 

IC50=5.80±0.13%% at 200 μΜ

91

7-O-(BnO-L-Leu-carbonylmethyl) naringenin

Flavonoid derivatives

 

IC50=18.72±0.43% at 200 μΜ

91

liquiritigenin

Flavanone

Glycyrrhiza glabra

Weak Hyal inhibition (IC50= 740 μΜ)

92

 

 

 

IC50=680±43 μmol/L

 

isoliquiritegin

Flavanone

Glycyrrhiza glabra

Potent Hyal inhibition (IC50= 64 μΜ)

93

Baicalein

Flavone

Scutellaria baicalensis

Low Hyal inhibition (IC50=165 μΜ)

94

paeniflorin

Phenolic derivative

Paeonia albiflora

Potent Hyal inhibition

94

 

Table S5: Plants, extracts and isolated compounds that have been studied for their inhibitory properties towards Tyrosinase.

Plant

Medicinal use

Inhibition towards Tyr

Ref.

Morus australis

Antioxidant, anti-inflammatory, anticancer properties, treatment against postprandial hypoglycemic disorders, anti-tyrosinase agent, cosmetics and skin-whitening agent, food agent, production of wine and vinegar

Isolated chalcones:

(E )-1,3-bis(2,4-dixydroxyphenyl)1-prop-2-en-1-one (1) (IC50=0.21 μΜ)

(E )- 1-(2,4-dihydroxy-3-(30methylbut-2-en-1-yl)phenyl)-3-(2,4-dihydroxyphenyl) prop-2-en-1-one (2) (IC50=0.82 μΜ)

(1΄R, 2΄R, 3΄΄R)-2΄-(2,4-dihydroxy-3-(3-methylbut-2-en-1-yl)benzyl)-3΄΄- (E )-(2,4-dixydroxyphenyl)-1-hydroxyallyl-5΄-methyl-1΄,2΄,3΄',6΄-tetrahydro-[1,1΄,3΄',1΄΄-terphenyl]-2,2΄΄,4,6΄΄-tetraol (3) (IC50=4.62 μΜ) (E)-1-(2,4-dihydroxy-3-((Z)-4-hydroxy-3-methylbut-2-en-prop-2-en-1-one (4) (IC50=0.17 μΜ)

95,96

Gastrodia elata

Treatment against neurodegenerative disorders, paralysis, stroke, dementia, vertigo and epilepsy

Bis-(4-hydroxybemzyl) sulfide (IC50=0.53 μΜ, competitive inhibition)

95

Cassia fistula

(Fabacee) (Golden shower)

Antioxidant, anticancer, antibacterial, antifungal, antidiabetic, Treatment against skin disorders

Flower extract: (IC50=50-200 μg/ml)

97-100

Pyracantha fortunea

Digestive properties, cosmetic and skin-whitening agent

A (3,3΄-dihydroxy-5΄-methoxy-(1,1΄-biphenyl)-4-O-β-D-glucoside

B (4΄-hydroxy-2,3΄,5΄-trimethoxy-(1,1΄-biphenyl)-2΄-O-β-D-glucoside

C (4΄-hydroxy-3,5΄-dimethoxy-(1,1΄-biphenyl)-2-O-β-D-glucoside

D (2,4΄-dihydroxy-3-5΄-dimethoxy-(1,1΄-biphenyl)-3-O-β-D-glucoside (IC50=0.07 mM)

E 3,4΄-dihydroxy-3΄,5΄-dimethoxy-(1,1΄-biphenyl)-4-O-β-D-glucoside

101

Crataegus pinnatifida (Hawthorn) (Rosaceae)

Medicinal agent, skin treatment, cosmetic agent, food agent

A: 8-O-4΄-neolignan-9΄-glucopyranoside (37.58% Tyr inhibition at 500 μg/ml)

B: (7R,8S)-erythro-3,7,3΄-trimethoxy-8-O-4΄-neolignan-9΄-O-β-D glucopyranoside (known as pinnatifidaninside B) (34.54% Tyr inhibition at 500 μg/ml)

C: pinnatifidaninside C (31.5% Tyr inhibition at 500 μg/ml)

D: pinnatifidaninside D (32.97% Tyr inhibition at 32.97%)

E: 7R,8S-dihydrodehydrodiconiferyl alcohol-9-O-β-D-glucoside (46.00% Tyr inhibition at 500 μg/ml)

F:7R,8S-dihydrodehydrodiconiferyl alcohol-9΄-O-β-D-glucoside (58.15% Tyr inhibition at 500 μg/ml)

103

 

Humulus Lupulus

Sleep disorders, restlessness, excitability promotion, digestive agent, treatments against spasma, cough, fever, inflammation, earache, toothache, food agent

n-Hexane extract (no Tyr inhibition)

Acetone extract (no Tyr inhibition)

Methanol-1 extract (no Tyr inhibition)

Methanol-2 extract (no Tyr inhibition)

Methanol-3 extract (no Tyr inhibition)

25% aqueous ethanol extract (no Tyr inhibition)

104

Artocarpus xanthocarpus Merr. (Moraceae)

Free radical scavenging and antityrosinase propeties

artoxanthol (IC50=5.7±0.3 μΜ, mixed type competitive inhibition)

alboctalol (IC50=6.4±0.3 μΜ, mixed type competitive inhibition) steppogenin105 (IC50=1.9±0.1 μΜ) (competitive inhibition)

norartocarpetin (IC50=0.9±0.1 μΜ, competitive inhibition)

resveratrol (IC50=4.9±0.3 μΜ) oxyresveratrol (IC50=1.0±0.5 μΜ) (non-competitive inhibition) chlorophorin (IC50=2.5±0.4 μΜ)

artoxanthocarpuone A (ΙC50=59.3±3.7 μΜ, mixed type competitive inhibition)

hydroxylakoochin A (IC50=97.5±1.5 μΜ)

artoxanthochromate (IC50=85.8±0.1 μΜ)

morusin (IC50=75.0±4.1 μΜ)

albanin A (IC50=58.2±5.1 μΜ)

cudraflavone C (IC50=40.8±1.9 μΜ)

106,107

Malus doumeri (Formosan Apple) (Rosaceae)

Antioxidant agent, HNE inhibitior, Matrix Metalloproteinase inhibitor, Tyrosinase inhibitor

phloretin (IC50=28.99±3.57% Human tyrosinase inhibition),

phloridzin (IC50=11.32±2.34% Human tyrosinase inhibition,

3-hydroxyphloridzin (IC50=22.53±2.33% Human tyrosinase inhibition),

Quercetin (IC50=35.84±2.94% Human tyrosinase inhibition),

chrysin (IC50=22.96±5.63% Human tyrosinase inhibition),

chrysin-5-glucoside (IC50=16.64±2.84% Human tyrosinase inhibition),

3-hydroxyphloretin (IC50=80.50±1.40% Human tyrosinase inhibition, cellular Tyrosinase inhibition: IC50=32 μΜ),

protocatechuic acid (IC50=33,45±1.59% Human tyrosinase inhibition),

catechol (IC50=78.13±0.47 % Human tyrosinase inhibition, cellular tyrosinase inhibition: 22 μΜ),

rutin

(IC50=16.94±2.31% Human tyrosinase axctivity), pynosylvin (IC50=31.85±1.92% Human tyrosinase inhibition)

108,109

Cinnamomum osmophloeum Kanehira

Antioxidant, anti-inflammatory and antibacterial properties, flavoring and food agent

Plant extracts: (medium inhibition of mushrooum Tyr at 200 μΜ)

110

Xanthium strumarium L.(Xanthii fructus) (Asteraceae)

Leucoderma, fever, headache

Ethyl acetate extract (IC50=0.26 mg/ml)

Protocatechuic acid (IC50=2.53±0.06 mM, competitive inhibition), chlorogenic acid (IC50=1.05±0.06 mM, mxed-type inhibition), 3,5-di-O-caffeoylquinic acid (IC50=1.07±0.08 mM, competitive inhibition), 1,5-di-O-caffeoylquinic acid (IC50=1.19±0.03 mM, competitive inhibition), 1,3-di-O-caffeoylquinic acid (IC50=1.67±0.08 mM, mixed-type inhibition), 1,3,5-tri-O-caffeoylquinic acid (IC50=1.16±0.06 mM, mixed type inhibition)

111

Metasequoia glyptostroboides

Antioxidant, antibacterial, antifungal and antidermatophytic properties

Taxiquinone (52.32% Tyr inhibition at 1000 μg/ml)

112

Koompassia malaccensis

Anticiabetic, antioxidant, antimalarial, antidysentery and antifever properties

Taxifolin, flavanol rhamnosides (5.86-25.9% myshroom Tyr inhibition)

113

Aloe

Anti-inflammatory, anti-viral, anti-bacterial, anti-cancer anti-diabetic, anti-allergy properties, cosmetics agent, health drinks and beverages agent

 

114-117

Chloranthus tianmushanensis

Anti-tyrosinase agent

Terpenoids extracted from leaves (potent Tyr inhibition in a dose dependent manner)

118

Heterothea inuloides (Arnica)

Skin disorders

Plant extracts (IC50= 190 μg/ml)

Quercetin (IC50= 22 μg/ml)

Kaempferol (IC50= 67 μg/ml)

119

Buddleia coriacea (Logariaceae)

Antimelanogenic properties

Buddlenoid A (IC50= 0.39 mM)

Buddlenoid B (IC50= 0.44 mM)

120

Dillenia indica (Elephant apple) (Dilleniaceae)

Antitumour agent, flavoring agent

Betulinic acid (Monophenolase inhibitory activity at 80 μΜ, diphenolase inhibitory activity at 40 μΜ, non-competitive inhibitor)

121

Calceolaria talcana (Calceolariaceae)

Diureticm antimicrobial agent

Ethyl acetate extract (IC50=97.7 μgml)

Isolated constituents:

verbascoside (IC50=108.4 μΜ, competitive inhibitor)

martynoside (ΙC50=177.7 μΜ, competitive inhibitor)

naphthaquinone (ΙC50= 91.2 μΜ, competitive inhibitor)

quercetin (IC50=50 μΜ, competitive inhibitor)

benzoic acid (ΙC50=640 μΜ, mixed type inhibitor)

tannic acid (IC50=22 μΜ, competitive inhibitor)

122

Berberis Aristata (Berberidaceae)

Hepatoprotective, antidiarrhoeal, cardiotonic, antidiabetic, antimicrobia, anticancer, anti-inflammatory agent

Methanolic extract (97% monophenolase inhibition at 110 μg/ml, competitive inhibition) (50% diphenolase inhibition at 412, 01 μg/ml, mixed type inhibition)

Aqueous extract (78% monphenolase inhibition at 110 μg/ml, competitive inhibition)50% diphenolase inhibition at 431.11 μg/ml, mixed tipe inhibition)

123

Polygonum cuspidatum (Polygonaceae)

Antibacterial, antioxidant, anti-inflammatory agent

Supeercritical carbon dioxide fruit extract (<10.0% mushroom Tyr inhibition at 20 μg/ml, <10.0% inhibition at 50 μg/ml, 14.8±1.23% inhibition at 100 μg/ml, 22.6±1.61% inhibition at 250 μg/ml)

124-126

Cudrania cochinchinensis

Rheumatism, hepatitis, gonorrhea, bruising, constuted wounds

95% Ethanolic extract (IC50=36.3 μg/ml)

Root extract (IC50=56.2 μg/ml)

Twig extract (IC50>400 μg/ml)

Leaf extract (IC50>400 μg/ml)

Isolated compounds:

oxyresveratrol (IC50=2.33±0.24 μΜ), 2, 3-trans-dihydromorin (IC50=21.09±0.70 μΜ)

2, 3-cis-dihydromorin (IC50=31.14±0.49 μΜ).

quercetin-7-O-β-D-glucoside (IC50=143.037±2.16 μΜ),

kaempferol 7-O-β-D-glucopyranoside (IC50>100 μΜ)

morin-7-O-β-D-glucoside

(IC50= 196.33±4.47 μΜ)

quercetin-7-O-b-D-glucoside (IC50= 143.0 mM) and quercetin- 3, 7-di-O-b-D-glucoside (IC50 > 1000 mM)

kaempferol-7-O-b-glucopyranoside (low inhibition)

kaempferol-3,7-di-O-b-glucopyranoside (low inhibition),

dihydrokaempferol-7-O-b-D-qlucopyranoside (low inhibition)

aromadendrin (low inhibition)

127,128

Artocarpus heterophyllus

Antioxidant, anti-inflammatory, antiaging and antimelanogenic agent, food agent

Artocarpfuranol (IC50 <50 μΜ), dihydromorin (IC50 <50 μΜ), steppogenin (IC50 <50 μΜ), norartocarpetin (IC50 <50 μΜ), artocarpanone (IC50 <50 μΜ), artocarpesin (IC50 <50 μΜ), and isoartocarpesin (IC50 <50 μΜ)

105,129-131

Campylotropis hirtella (Legumisae)

Amenorrhea, metrorhagia, metrostaxis, gastric ulcers, benign prostate hyperplasia, food ingredient

Methanolic root barks extract (IC50=60% at 20 μg/ml)

3΄-geranyl-5,7,2΄,4΄-tetrahydroxyisoflavanone (subs: L-tyrosine: IC50=2.9±0.3 μΜ, subs: L-DOPA: IC50=128.2±0.5 μΜ, competitive inhibition, with both substrates),

3΄-geranyl-5,7,3΄,5΄-tetrahy-droxyisoflavone (subs: L-tyrosine: IC50=92.0±0.2 μΜ, subs: L-DOPA: IC50>200 μΜ, competitive inhibition with L-DOPA as substrate),

Neuroflavane (subs: L-tyrosine: IC50=0.03±0.006 μΜ, subs: L-DOPA: IC50=0.5±0.03 μΜ, competitive inhibition with both substrates),

(E)-3-(3-(3,7-dimethylocta-2,6-dienyl)-2,4-dihydroxyphenyl)-3,5,7-trihydroxy-chroman-4-one (subs: L-tyrosine: IC50=18.4±0.8 μΜ, subs: L-DOPA: IC50=144.0±1.2 μΜ, competitive inhibition with both substrates)

17,18,132,133

Flemingia philippinensis

Antioxidant, anti-inflammatory, cytotoxicity, antiestrogenic, immunosuppressive properties, food agent

Root methanolic extract (80% Tyr inhibition at 30 μg/ml)

fleminchalcone A (subs. L-tyrosine: IC50= 1.01 μΜ, subs. L-DOPA: IC50=19.5 μΜ, monophenolase and diphenolase inhibitory activity, competitive inhibition)

fleminchalcone B (subs. L-tyrosine: IC50=18.4 μΜ, subs. L-DOPA: IC50=32.6 μΜ, monophenolase and diphenolase inhibitory activity competitive inhibition)

fleminchalcone C (subs. L-tyrosine: IC50= 1.28μΜ, (subs. L-DOPA: IC50= 5.22 μΜ, monophenolase and diphenolase inhibitory activity, competitive inhibition)

flemichin D (subs. L-tyrosine: IC50= 1.79 μΜ, subs. L-DOPA: IC50=7.48 μΜ, monophenolase and diphenolase inhibitory activity, competitive inhibition )

lupinifoin, (subs. L-tyrosine: IC50= 11.2 μΜ, subs. L-DOPA: IC50=84.10 μΜ, monophenolase and diphenolase inhibitory activity, competitive inhibition)

khonklonginol H (subs. L-tyrosine: IC50= 4.96 μΜ, subs. L-DOPA: IC50=20.4 μΜ, monophenolase and diphenolase inhibitory activity, competitive inhibition )

 

35,96,134,135

Herniaria glabra L.

Hypotension, antispasmodic and diuretic properties, treatments against urinary tract infections, cystitis, irritable bladder, skin disorders

Pure crude extract (7.39±0.59% Tyr inhibition at 1 mg/ml)

Saponin fraction (8.50±1.40% Tyr activity at 1 mg/ml)

bidesmoside herniaria saponin 8 (4.21±0.79% Tyr inhibition at 1 mg/ml)

bidesmoide herniaria saponin 10 (8.44±1.69% Tyr inhibition at 1 mg/ml)

bidesmoside herniaria saponin 11 (8.25±1.17% Tyr inhibition at 1 mg/ml)

bidesmoside herniaria saponin 12 (7.73±1.04% Tyr inhibition at 1 mg/ml)

bidesmoside herniaria saponin 13 (IC50= 9.82±1.35% Tyr inhibition at 1 mg/ml)

monidesmoside herniaria saponin 16 (IC50= 7.30±1.22% Tyr inhibition at 1 mg/ml)

monodesmoside herniaria saponin 17 (IC50= 3.64±0.72% Tyr inhibition at 1 mg/ml)

bidesmoside herniaria saponin 1 (IC50= 8.77±1.27% Tyr inhibition at 1 mg/ml)

monodesmoside herniaria saponin 4 (IC50= 3.39±1.69% Tyr inhibition at 1 mg/ml)

bidesmoside herniaria saponin 5 (IC50= 9.75±1.53% Tyr inhibition at 1 mg/ml)

monodemoside hrniaria saponin 6 (IC50= 2.18±0.97% Tyr inhibition at 1 mg/ml)

monodesmoside herniaria saponin 7 (IC50= 8.40±0.50% Tyr inhibition at 1 mg/ml)

8

Rhizophora mucrinata L. (Rhizophoraceae)

Main source of carbon, vitamins, proteins, minerals, fatty acids, energy for humans and living organisms, climate change regulator

Methanolic twig extract (IC50= 145.31±1.39 mg KAE (kojic acid equivalent/g)

Methanolic leaf extract (IC50=±144.02 mg KAE (kojic acid equivalent/g)

32,136

Eucalyptus globulus Labill (Timber tree)

Flu, rheumatism, dysentery, eczema

Ethanolic extract isolated compounds:

isoiphionane sesquiterpene:

3β,11-dihydroxyisoiphion-4-one (IC50= 14.17 μΜ)

5-formyl-4-hydroxy-2-isopropyl-7-methylbenzofuran-6-Ο-β-D- glucopyranoside (known as eucalglobuide A) (IC50= 57.08± 2.52 μΜ)

5-formyl-6-hydroxy-2-isopropyl-7-mthylbenzofuran (IC50= 91.76± 3.41 μΜ)

4-Ο-β-D- glucopyranoside (eucalglobuside B) chromene glucoside (IC50=49.16 ±0.12 μΜ)

5β, 11-dihydroxy-iphionan-4-one (IC50= 10.08 μΜ)

Proximadiol (IC50> 100 μΜ)

(-)-α- eudesmol (IC50> 100 μΜ)

(-)-globulol (IC50=9.79 μΜ)

4β, 10 α-aromadendranediol (IC50> 100 μΜ) vomifoliol (IC50> 100 μΜ)

Isololiolide (IC50> 100 μΜ)

Eucalyptin (IC50= 33.43±0.14 μΜ)

(+)-rhododendrol (IC50=42.63±0.43 μΜ)

4-(4΄-hydroxy-3΄-methoxyphenyl)-2R-butanol (IC50= 21.65 μΜ)

ursolic acid lactone (IC50> 100 μΜ)

3β-acetoxyurs-11-en-28 13 olide, pinoresinol (IC50= 74.57 ±0.26 μΜ).

2,5-dimethylhydroquinone (IC50> 100 μΜ)

137

Mangifera indica L. (Mango) (Anacardiaceae)

Diabetes, respiratory disorders, antimicrobial, anti-osteoporosis, andi-cardiovascular agent, the aqueous leaves extracts are consumed as tea

Ethyl acetate extract (IC50= 17.62±1.26 μg/ml)

n-butanol extract (IC50= 117.84±9.62 μg/ml)

Aqueous extract (IC50=557.92±27.18 μg/ml)

Major inhibitors: gallic acid, mangiferin, protocatecuic acid, hyperoside, quercitrin, quercetin-3-O-xyloside, derivatives pf benzophenone, epicatechin gallate, 1,2, 3, 4, 6-penta-O-galloy glucoside, luteolin-7-O-glucoside, kaempferol-3-O-glucoside, quercetin-3-O-rhamnoside

Minor inhibitors: Isomangniferin, 6΄-O-(p-hydroxybenzoyl) mangiferin, glycosidic derivatives of irriflophenone such as iriflophenone 3-C-(2΄,3΄,6΄-tri-O-galloyl)-glucoside, glucosidic derivatives of maclurin [3-C-(2΄-O-galloyl)-glucoside and maclurin 3-C-(2΄,3΄-di-O-galloyl)-glucoside]

138

Camellia Pollen

Antitoxic, anti-inflammatory, antioxidant, antimutagrnic agent, food supplement

Caffeine (IC50=18.5±2.31 μg/ml, reversible, noncompetitive inhibition, Ki=80 μΜ)

Baicalein (IC50= 21.7 μg/ml)

Brazilein (IC50= 6.07 mg/ml)

Thobarbituric acid (IC50=1.15 mg/ml)

139

Malcolmia littorea (L).

Anti-inflammatory, antioxidant agents, use for pharmaceutical, food and cosmetic applications

Methanolic root extract (IC50= 24.96±0.19 mg KAE/g)

ethanolic root extract (IC50=25.32±0/04 mg KAE/g) aqueous root extract (IC50= 6.28±0.45 mg KAE/g)

ethanolic aerial organ extract (IC50= 25.78±0.18 mg KAE/g)

methanolic extract (IC50= 26.48 ±0.12 mg KAE/g)

aqueous (IC50= 5.32 ±0.08 mg KAE/g)

flower ethanolic extract (IC50= 26.56±0.23 mg KAE/g)

methanolic (IC50= 25.85±0.21 mg KAE/g)

aqueous (IC50= 4.33±0.39 mg KAE/g)

140

Morinda morindoides (Baker) (Rubiaceae)

Hemorrhoids, rheumatism, gonorrhea, malaria, diarrhea, amebiasis

Aqueous seed extract (IC50= 24.56±0.69 mg KAE/g)

Aqueous fruit extract (IC50= 43.70±1.26 mg KAE/g)

Methanolic seeds extract (IC50= 72.40±0.46 mg KAE/g)

Methanolic fruit extract (IC50= 73.59±1.24 mg KAE/g)

141-144

Cakile Maritina Scop. (Sea rocket) (Brassicaceae or mustard)

Scurvy, digestive disorders, diuretic disorders, dandruff, food agents for flavor improvement (leaves), bread making (ground roots)

Aerial organs ethanolic extract (IC50=25.9±0.13 mg/ml)

Aerial organs acetone extract (IC50=24.7±0.13 mg/ml)

Aerial organs aqueous extract (IC50= 19.9±0.12 mg/ml)

Fruit ethanolic extract (IC50= 24.9±0.25 mg/ml)

Fruit acetone extract (IC50= 24.0±0.33 mg/ml)

Fruit aqueous extract (IC50= 6.16±0.30 mg/ml)

145-147

Leonurus japonicas (Yi Mu Cao) (Labiatae)

Dysmenorrhea, menoxenia, amenorrhea, ulcerations etc

10- methoxy-leonurine (IC50= 91.8 ±2.9% Tyr inhibition at 100 μΜ, competitive inhibition (Ki= 1.6±0.7 μΜ)

Leonurine (IC50= 85.6±1.8% Tyr inhibition at 100 μΜ, competitive inhibition, Ki=11.4±1.1 μΜ)

syringic acid (IC50= 11.6±0.1% Tyr inhibition at 100 μΜ)

isouercitrin (IC50= 1.8±5.9% Tyr inhibition at 100 μΜ)

leonurusoide E (IC50= 8.3±0.6% Tyr inhibition at 100 μΜ)

148,149

Grapes

Wine production

Caftaric acid (IC50= 30 μΜ)

Chlorogenic acid (IC50= 42 μΜ)

Caffeic acid (IC50= 65 μΜ)

150

Wulfenia Carinthiaca s.L. (National flower of Carinthia) (Plantaginaceae)

Ornamental plant, cosmetic agent

Aerial part methanolic extract (40% mushroom Tyr inhibition at 500 μg/ml)

Methanolic extract isolated compounds:

Iridoid glucosides:

plantmamajoside (IC50= 0.11±3.61% mushroom Tyr inhibition at 500 μΜ), globularicisin (cis-globularin, (4.20±6.06% mushroom Tyr inhibition at 500 μΜ)

2΄-O-Acetylplantamajoside (IC50= 33.07±1.00 % mushroom Tyr inhibition at 500 μΜ),

globularin (79.59±1.62 % mushroom Tyr inhibition at 500 μΜ, IC50= 41.94 μΜ)

Phenylethanoid glucosides:

2΄,6΄΄-O-Diacetylplantamajoside (IC50= 29.76±4.24 % mushroom Tyr inhibition at 500 μΜ)

2΄-O-Acetylisoplantamajoside (IC50= 13.50±3.10 % mushroom Tyr inhibition at 500 μΜ)

baldaccioside (IC50= 23.01±3.16 % mushroom Tyr inhibition at 500 μΜ), isoscrophularoside (IC50= 48.49±2.08% mushroom Tyr inhibition at 500 μΜ) 2΄,6΄΄-O-diacetylisoplantamajoside (IC50= 26.14±3.18% mushroom Tyr inhibition at 500 μΜ )

151

Neolentinus lepideus (Fr.) (Redhead and Ginns) (lentinus lepideus (Fr.) (Gloeophyllaceae)

Antimicrobial properties, cosmetic agents against melanoma, food intake (for edible mushrooms)

Culture filtrate extracts (72% Tyr inhibition at 1000 μg/ml)

Isolated compounds:

1, 3-dihydroisobenzofuran-4,5,7-triol (IC50= 173 μg/ml, competitive inhibition)

5-methoxy-1,3-dihydroisobenzofuran-4,7-diol (IC50= 263 μg/ml, competitive inhibition)

152

Asplenium trichomanes (Aspleniaceae)

Antitumour, antioxidant and antidiabetic properties

Aerial parts methanolic extract

4-ethylphenyl-6-O-96-deoxy-α-L-mannopyranosyl)-β-D-glucopyranoside (IC50≥600 μΜ)

153

Scutellaria altissima (Lamiaceae)

Haemostatic, tonic, wound healing properties, food and beverage agent

Aerial parts methanolic extract

Globularin (IC50=41.91 μΜ)

153

Pinus uncinata subsp. Uncinata (Pinaceae)

Antiseptic, astringent, diuretic, antispasmotic properties

Methanolic extract

Benzoic acid (IC50≥551.53 μΜ)

Roseoside (IC50≥1200 μΜ)

Dihydrovomifoliol-O-β-D-glucopyranoside (IC50≥1200 μΜ)

153

Puearariae Lobatae Radix

Anti-diabetixc, anti-fever, anti-diarrheal aget, skin-whitening

Puerarin (IC50=0.537 mg/ml, monophenolase activity, mixed-type inhibitor/ diphenolase activity: (Ka)- 1.45 mg/ml, mixed-type activation mechanism)

154-156

Pueraria thumbergiana (Kudzu) (Leguminosae)

Anti-inflammatory, anti-diabetic, anti-cardiovascular, anti-liver steatosis, anti-melanogenic, antipyretic, analgesic, muscle relaxant agent

Aerial part (potent mushroom tyrosinase inhibition)

Plant extracts (potent cellular tyrosinase inhibition in B16F10 cells, after stimulation with α-MSH)

154-157

Pueraria lobate Ohwi

Anti-inflammatory, antioxidant, anti-cardiovascular, antidiabetic agent etc

Purarin (45%-76% Tyr inhibition at a range of 0.5-8.0 mg/ml, IC50= 1.23 mmol/L)

154-157

Vigna angularis

Hepatoprotective, anticancer, anti-inflammatory, antioxidant agent, food agent

Seeds extracted condensed tannins: (IC50=130.0≥0.5 μg/ml, monophenolase inhibition, IC50=35.10±2.0 μg/ml, diphenolase inhibition, mixed-type reversible mushroom tyrosinase inhibition)

158

Clausena lansium

Antidiabetic, anticancer and antioxidant properties

Plants extracted condensed tannins (IC50=23.6±0.3 μg/ml, monophenolase inhibition)

134,159

Haworth

Antimicrobial, antioxidant properties

Fruit stone extracted condensed tannins (IC50=37.00 ±05 μg/ml, monophenolase inhibition)

160

Avogado

Antioxidant and antifungal properties

Fruit stone extracted condensed tannins (IC50=40.00±1.2 μg/ml, monophenolase inhibition)

160

Cudrania tricuspidata

Treatment against digestive apparatus tumor, anti-inflammatory, antifungal, anti-lipid peroxidative, α-glucosidase, antioxidative and cytotoxic properties

(2S,3S)-2,3-trans-dihydromorin-7-O-β-D-glucoside (ΙC50= 93.17±1.55 μΜ)

taxifolin- 7-O-β-D-glucopyranoside (IC50> 200 μΜ)

protocatechuic acid (IC50> 500 μΜ) sphaerobioside (IC50> 150 μΜ)

orobol-8-C-glucoside (IC50> 200 μΜ)

dihydrokaempferol-7-O-β-D-glucoside (IC50> 200 μΜ)

taxifolin (IC50> 300 μΜ)

trans-dihydromorin (IC50=21.54±0.84 μΜ)

oxyresveratrol (IC50=2.85±0.26 μΜ)

dihydrokaempferol (IC50> 100 μΜ) taxifolin 7-methyl ether (IC50> 300 μΜ)

steppogenin (IC50=2.52±0.66 μΜ) quercetin (IC50=54.58±0.89 μΜ) orobol (IC50> 300 μΜ)

naringenin (IC50> 500 μΜ)

genistein (IC50> 300 μΜ)

santal (IC50> 300 μΜ)

glycyrrhisoflavone (IC50> 200 μΜ) wighteone (IC50> 100 μΜ)

6,8-diprenylorobol (IC50> 100 μΜ) 1,5-dihydroxy-3,6-dimethoxy-xanthen-9-one (IC50> 300 μΜ) cudraxanthone H (IC50≥ 200 μΜ) alpinumisoflavone (IC50> 200 μΜ)

8-(γ,γ-dimethylallyl)wighteone (IC50> 200 μΜ)

dulxanthone-B (IC50> 200 μΜ) cyclomorusin (IC50> 200 μΜ)

5-methoxy-4,5-diphenyl-2(5H)-furanone (IC50> 300 μΜ) cycloaltilisin-7 (IC50> 200 μΜ)

161-163

Green tea

(EGCG), (-) epigallocatechin (EGC). (-)-epicatechin (EC), (+)-catechin (C ), caffeine (CAF)

(-)-epicatechin 3-O-gallate (ECG) (IC50= 34.58 μΜ)

(-)-gallocatechin 3-O-gallate (GCG), (IC50= 17.34 μΜ, competitive inhibition)

(-)epigallocatechin 3-O-gallate (EGCG) (IC50=34.10 μΜ)

164

Dillenia indica

 

Triterpenoid

121

Glycyrrhiza species (Leguminosae)-Glycyrrhiza glabra

Skin-whitening agent

Glabridin (potentt tyrosinase inhibition)

Glabrene (potent tyrosinase inhibition)

165

Glycyrrhiza species (Leguminosae)-Glycyrrhiza uralensis

Skin-whitening agent

Ethyl acetate fraction from methanolic extract:

(Flavone) Licoisoflavone A (I50> 100 μg/mL)

Coumarin (Glycycoumarin) (IC50> 100 μg/mL)

Flavanone (3΄-(γ, γ΄- dimethylallyl)-kievitone (IC50> 100 μg/mL)

Isoflavone (glycyrrhisoflavone) ic50=46.2±0.60 μg/mL, Anti-melanogenic activity on B16F10 melanoma cells (IC50= 63.7±6.8% at a concentration of 5 μg/mL)

Flavanone: Glyasperin C-3 (IC50=0.13 ±0.01 μg/mL)

Flavanone: Glabridine C-5 (IC50=0.25 μg/mL)

 

 

 

Table S6: Studied natural secondary metabolites for their inhibitory properties towards Tyrosinase.

Inhibitor

Chemical Family

Source

IC50

Binding Properties

Ref.

Kaempferol

Flavonoids

 

 

 

119,166

Quercetin

Flavonoids

 

 

 

119,167

Kuarinone

Flavonoids

 

 

 

168

Kushnol F

Flavonoids

 

 

 

168

Luteolin 4΄-O-glucoside

Flavonoid glucosides

 

 

 

140

Luteolin 7-O-glucoside

Flavonoid glucosides

 

 

 

140

Morin

Flavonoid

 

 

 

169

Catechin

Flavonoid

 

 

 

170

Rhamnetin

Flavonoid

 

 

30.6% murine Tyr inhibition on B16 cells at 5 μΜ, 63.3% murine Tyr inhibition on B16 cells at 20 μΜ and 75.5% murine Tyr inhibition on B16 cells at 40 μΜ.

171

Gallic acid

Phenolic acids

 

 

 

164

1,2,3,4,6-Penta-O-galloyl-d-glucose (PGG)

Gallic acid derivative

Galla rhois

 

Strong inhibition

168,170,172

(S)-N-trans-Feruloyloctopamine

Phenolic acid derivatives

Garlic skin

 

IC50=5.3±1.8 μΜ

173

(+) catechin

Tannins

Green tea

 

IC50=57.12 μΜ

170

(-)-epicatechin gallate (ECG)

Tannins

Green tea

 

IC50=22.63 μΜ

170

(-)-epigallocatechin-3-O-gallate (EGCG)

Tannins

Green tea

 

IC50=142.40 μΜ

170

β-arbutin

(hydroquinone β-D- glucopyranoside)

 

 

Potent Tyr inhibition, used as cosmetic agent

174

Deoxyarbutin

Synthetic hydroquinone derivative

 

 

Potent Tyr inhibition, used as cosmetic agent

134,175,176

Mequinol

Hydroquinone monomethyl ether

 

 

Potent Tyr inhibition, used as cosmetic agent

177

Licochalcone A

Chalcone

Glycyrrhiza species

 

Pontent mushroom Tyr inhibitor

175,178

Kuraridin

Chalcone

 

 

 

179

Kuraridinol

Chalcone

 

 

 

179,180

2,4, 2΄, 4΄-tetrahydroxy-3-(3-methyl-n-butenyl) chalcone

Chalcone

 

 

Potent Tyr inhibition

95,134,175,178

Resveratrol

Stilbenes

 

 

Strong Tyr inhibition (32 times higher Tyr inhibition than standard control kojic acid)

181,182

Trans-cinnamaldehyde

Aldehyde derivatives

 

 

 

168,183

(2E )-alkenals

Aldehyde derivatives

 

 

 

168,183,184

2-hydroxy-4-methoxybenzaldehyde

Aldehyde derivatives

 

 

 

185,186

Anisaldehyde

Aldehyde derivatives

 

 

 

186,187

Cuminaldehyde

Aldehyde derivatives

 

 

 

188,189

Cumic acid

Aldehyde derivatives

 

 

 

188

3,4-dihydroxycinnamic acid

Cinnamic acid derivatives

 

 

 

187

4-hydroxy-3-methoxycinnamic acid

Cinnamic acid derivatives

 

 

 

187

Glycolic acid

 

Grapes, sugarcane, beets

 

IC50=83.00±14.00 μΜ

98.5% tyrosinase inhibition at a concentration of 200 μΜ, mixed-type reversible inhibition

190

191

 

 

 

 

 

 

Table S7: Illustration of the results given with the two softwares (NC-DB and Maestro) a) Elastase with caffeic acid, b) Hyaluronidase with quercetin and c) Tyrosinase with betulinic acid

a)      Elastase-Caffeic acid

NC-DB RESULTS

MAESTRO RESULTS

Hydrophobic Interactions

Hydrogen Bonds

pi-Stacking

Hydrophobic Interactions

Hydrogen Bonds

pi-Stacking

PHE192

PHE41

PHE192

PHE192

VAL41

HIS57

 

GLY193

 

 

GLY193

 

 

VAL216

 

 

LEU216

 

 

b)     Hyaluronidase-Quercetin

NC-DB RESULTS

MAESTRO RESULTS

Hydrophobic Interactions

Hydrogen Bonds

pi-Stacking

Hydrophobic Interactions

Hydrogen Bonds

pi-Stacking

GLU131

GLU131

TYR202

TYR202

GLU131

TYR247

TYR202

TYR202

TYR261

TYR247

ASP292

ARG134

TYR247

GLY203

ARG265

 

ARG134

ARG265

 

TYR210

ASP292

 

 

 

 

SER245

 

 

 

 

 

c)      Tyrosinase-Betulinic acid

NC-DB RESULTS

MAESTRO RESULTS

Metal Complexes

Metal Complexes

Hydrophobic Interactions

Hydrogen Bonds

Metal Complexes

Metal Complexes

Hydrophobic Interactions

Hydrogen Bonds

HIS42

HIS204

PHE197

VAL218

42 HIS

204 HIS

VAL217

ASN205

HIS60

HIS208

HIS231

PRO201

60 HIS

208 HIS

PHE197

 

 

 

 

ASN205

 

231 HIS

ASN205

 

 

 

 

VAL217

 

 

VAL218

 

 

 

 

VAL218

 

 

 

 

 

 

 

PRO219

 

 

 

 

 

Table S8: Illustration of the results given with the two softwares (NC-DB and Maestro) for the compound Auricoulasin35, potent Elastase inhibitor.

NC-DB RESULTS

MAESTRO RESULTS

Hydrophobic Interactions

Hydrogen Bonds

pi-Stacking

Hydrophobic Interactions

Hydrogen Bonds

pi-Stacking

LEU143

PHE41

HIS57

143 LEU

41 PHE

57 HIS

PHE192

SER195

 

192 PHE

195 SER

 

 

SER214

 

41 PHE

214 SER

 

 

 

References.

(1) Thring, T. S.; Hili, P.; Naughton, D. P. Anti-Collagenase, Anti-Elastase and Anti-Oxidant Activities of Extracts from 21 Plants. BMC Complement. Altern. Med. 2009, 9 (1), 27. https://doi.org/10.1186/1472-6882-9-27.

(2) Maity, N.; Nema, N. K.; Abedy, M. K.; Sarkar, B. K.; Mukherjee, P. K. Exploring Tagetes Erecta Linn Flower for the Elastase, Hyaluronidase and MMP-1 Inhibitory Activity. J. Ethnopharmacol. 2011, 137 (3), 1300-1305. https://doi.org/10.1016/j.jep.2011.07.064.

(3) Xu, G.-H.; Kim, Y.-H.; Choo, S.-J.; Ryoo, I.-J.; Yoo, J.-K.; Ahn, J.-S.; Yoo, I.-D. Chemical Constituents from the Leaves of Ilex Paraguariensis Inhibit Human Neutrophil Elastase. Arch. Pharm. Res. 2009, 32 (9), 1215-1220. https://doi.org/10.1007/s12272-009-1905-7.

(4) Nema, N. K.; Maity, N.; Sarkar, B.; Mukherjee, P. K. Cucumis Sativus Fruit-Potential Antioxidant, Anti-Hyaluronidase, and Anti-Elastase Agent. Arch. Dermatol. Res. 2011, 303 (4), 247-252. https://doi.org/10.1007/s00403-010-1103-y.

(5) Löser, B.; Kruse, S. O.; Melzig, M. F.; Nahrstedt, A. Inhibition of Neutrophil Elastase Activity by Cinnamic Acid Derivatives from Cimicifuga Racemosa. Planta Med. 2000, 66 (8), 751-753. https://doi.org/10.1055/s-2000-9563.

(6) Battinelli, L.; Daniele, C.; Cristiani, M.; Bisignano, G.; Saija, A.; Mazzanti, G. In Vitro Antifungal and Anti-Elastase Activity of Some Aliphatic Aldehydes from Olea Europaea L. Fruit. Phytomedicine 2006, 13 (8), 558-563. https://doi.org/10.1016/j.phymed.2005.09.009.

(7) An, B.-J.; Kwak, J.-H.; Park, J.-M.; Lee, J.-Y.; Park, T.-S.; Lee, J.-T.; Son, J.-H.; Jo, C.; Byun, M.-W. Inhibition of Enzyme Activities and the Antiwrinkle Effect of Polyphenol Isolated from the Persimmon Leaf (Diospyros Kaki Folium) on Human Skin. Dermatologic Surg. 2006, 31, 848-855. https://doi.org/10.1111/j.1524-4725.2005.31730.

(8) Kozachok, S.; Pecio, Ł.; Orhan, I. E.; Deniz, F. S. S.; Marchyshyn, S.; Oleszek, W. Reinvestigation of Herniaria Glabra L. Saponins and Their Biological Activity. Phytochemistry 2020, 169 (September 2019), 112162. https://doi.org/10.1016/j.phytochem.2019.112162.

(9) Moon, J.-Y.; Yim, E.-Y.; Song, G.; Lee, N. H.; Hyun, C.-G. Screening of Elastase and Tyrosinase Inhibitory Activity from Jeju Island Plants. EurAsian J. Biosci. 2010, 53 (March), 41-53. https://doi.org/10.5053/ejobios.2010.4.0.6.

(10) Nema, N. K.; Maity, N.; Sarkar, B. K.; Mukherjee, P. K. Matrix Metalloproteinase, Hyaluronidase and Elastase Inhibitory Potential of Standardized Extract of Centella Asiatica. Pharm. Biol. 2013, 51 (9), 1182-1187. https://doi.org/10.3109/13880209.2013.782505.

(11) Mukherjee, P.; Maity, N.; Nema, N.; Sarkar, B. Standardized Clitoria Ternatea Leaf Extract as Hyaluronidase, Elastase and Matrix-Metalloproteinase-1 Inhibitor. Indian J. Pharmacol. 2012, 44 (5), 584. https://doi.org/10.4103/0253-7613.100381.

(12) Wittenauer, J.; Mäckle, S.; Sußmann, D.; Schweiggert-Weisz, U.; Carle, R. Inhibitory Effects of Polyphenols from Grape Pomace Extract on Collagenase and Elastase Activity. Fitoterapia 2015, 101, 179-187. https://doi.org/10.1016/j.fitote.2015.01.005.

(13) Boje, K.; Lechtenberg, M.; Nahrstedt, A. New and Known Iridoid- and Phenylethanoid Glycosides from Harpagophytum Procumbens and Their in Vitro Inhibition of Human Leukocyte Elastase. Planta Med. 2003, 69 (9), 820-825. https://doi.org/10.1055/s-2003-43225.

(14) Siedle, B.; Hrenn, A.; Merfort, I. Natural Compounds as Inhibitors of Human Neutrophil Elastase. Planta Med. 2007, 73 (5), 401-420. https://doi.org/10.1055/s-2007-967183.

(15) Piwowarski, J. P.; Kiss, A. K.; Kozłowska-Wojciechowska, M. Anti-Hyaluronidase and Anti-Elastase Activity Screening of Tannin-Rich Plant Materials Used in Traditional Polish Medicine for External Treatment of Diseases with Inflammatory Background. J. Ethnopharmacol. 2011, 137 (1), 937-941. https://doi.org/10.1016/j.jep.2011.05.039.

(16) Tan, X. F.; Kim, D. W.; Song, Y. H.; Kim, J. Y.; Yuk, H. J.; Wang, Y.; Curtis-Long, M. J.; Park, K. H. Human Neutrophil Elastase Inhibitory Potential of Flavonoids from Campylotropis Hirtella and Their Kinetics. J. Enzyme Inhib. Med. Chem. 2016, 31, 16-22. https://doi.org/10.3109/14756366.2015.1118683.

(17) Han HY, Wang XH, Wang NL, et al. Lignans Isolated from Campylotropis Hirtella (Franch.) Schindl. Decreased Prostate Specific Antigen and Androgen Receptor Expression in LNCaP Cell. J Agric Food Chem 2008, 56, 6928-35.

(18) Li XP, Xuan BX, Shou QY, S. Z. New Flavonoids from Campylotropis Hirtella with Immunosuppressive Activity. Fitoterapia 2014, 95, 220-8.

(19) Tan, X. F.; Kim, D. W.; Song, Y. H.; Kim, J. Y.; Yuk, H. J.; Wang, Y.; Curtis-Long, M. J.; Park, K. H. Human Neutrophil Elastase Inhibitory Potential of Flavonoids from Campylotropis Hirtella and Their Kinetics. J. Enzyme Inhib. Med. Chem. 2016, 31, 16-22. https://doi.org/10.3109/14756366.2015.1118683.

(20) Shou QY, Fu RZ, Tan Q, S. Z. Geranylated Flavonoids from the Roots of Campylotropis Hirtella and Their Immunosuppressive Activities. J Agric Food Chem 2009, 57, 6712-19.

(21) Pientaweeratch, S.; Panapisal, V.; Tansirikongkol, A. Antioxidant, Anti-Collagenase and Anti-Elastase Activities of Phyllanthus Emblica, Manilkara Zapota and Silymarin: An in Vitro Comparative Study for Anti-Aging Applications. Pharm. Biol. 2016, 54 (9), 1865-1872. https://doi.org/10.3109/13880209.2015.1133658.

(22) Ma J, Luo XD, Protiva P, Yang H, Ma C, Basile MJ, W.; IB, K. E. Bioactive Novel Polyphenols from the Fruit of Manilkara Zapota (Sapodilla). J Nat Prod. 2003, 66, 983- 986.

(23) Khurram, M.; Lawton, L. A.; Edwards, C.; Iriti, M.; Hameed, A.; Khan, M. A.; Khan, F. A.; ur Rahman, S. Rapid Bioassay-Guided Isolation of Antibacterial Clerodane Type Diterpenoid from Dodonaea Viscosa (L.) Jaeq. Int. J. Mol. Sci. 2015, 16 (9), 20290-20307. https://doi.org/10.3390/ijms160920290.

(24) Uddin, Z.; Li, Z.; Song, Y. H.; Kim, J. Y.; Park, K. H. Visconata: A Rare Flavonol Having Long Chain Fatty Acid from Dodonaea Viscosa Which Inhibits Human Neutrophil Elastase (HNE). Tetrahedron Lett. 2017, 58 (25), 2507-2511. https://doi.org/10.1016/j.tetlet.2017.05.059.

(25) Krenn, L.; Wollenweber, E.; Steyrleuthner, K.; Görick, C.; Melzig, M. F. Contribution of Methylated Exudate Flavonoids to the Anti-Inflammatory Activity of Grindelia Robusta. Fitoterapia 2009, 80 (5), 267-269. https://doi.org/10.1016/j.fitote.2009.03.001.

(26) Stahl-Biskup E. Grindelia. In: BlaschekW, Hänsel R, Keller K, R. J.; Rimpler H, Schneider G, E. Hagers Handbuch Der Pharmazeutischen Praxis, 5th Ed. Folgeband 2: Drogen A-K. Berlin. Springer 1998, 812.

(27) Kim, J. Y.; Lee, J. H.; Song, Y. H.; Jeong, W. M.; Tan, X.; Uddin, Z.; Park, K. H. Human Neutrophil Elastase Inhibitory Alkaloids from Chelidonium Majus L. J. Appl. Biol. Chem. 2015, 58 (3), 281-285. https://doi.org/10.3839/jabc.2015.044.

(28) Saleem, M.; Nazir, M.; Hussain, H.; Tousif, M. I.; Elsebai, M. F.; Riaz, N.; Akhtar, N. Natural Phenolics as Inhibitors of the Human Neutrophil Elastase (HNE) Release: An Overview of Natural Anti-Inflammatory Discoveries during Recent Years. Antiinflamm. Antiallergy. Agents Med. Chem. 2018, 17 (2), 70-94. https://doi.org/10.2174/1871523017666180910104946.

(29) Lee, S. M.; Song, Y. H.; Uddin, Z.; Ban, Y. J.; Park, K. H. Prenylated Flavonoids from Epimedium Koreanum Nakai and Their Human Neutrophil Elastase Inhibitory Effects. Rec. Nat. Prod. 2017, 11 (6), 514-520. https://doi.org/10.25135/rnp.66.17.05.090.

(30) H. Ma, X. He, Y. Yang, M. Li, D. H. and Z. J. (2011). The Genus Epimedium: An Ethnopharmacological and Phytochemical Review. J. Ethnopharmacol. 1 2011, 34, 519-541.

(31) Xu, G. H.; Ryoo, I. J.; Kim, Y. H.; Choo, S. J.; Yoo, I. D. Free Radical Scavenging and Antielastase Activities of Flavon Ids from the Fruits of Thuja Orientalis. Arch. Pharm. Res. 2009, 32 (2), 275-282. https://doi.org/10.1007/s12272-009-1233-y.

(32) Sadeer, N. B.; Rocchetti, G.; Senizza, B.; Montesano, D.; Zengin, G.; Uysal, A.; Jeewon, R.; Lucini, L.; Mahomoodally, M. F. Untargeted Metabolomic Profiling, Multivariate Analysis and Biological Evaluation of the True Mangrove (Rhizophora Mucronata Lam.). Antioxidants 2019, 8 (10). https://doi.org/10.3390/antiox8100489.

(33) Zhang, J.; Xu, H. Y.; Wu, Y. J.; Zhang, X.; Zhang, L. Q.; Li, Y. M. Neutrophil Elastase Inhibitory Effects of Pentacyclic Triterpenoids from Eriobotrya Japonica (Loquat Leaves). J. Ethnopharmacol. 2019, 242 (January), 111713. https://doi.org/10.1016/j.jep.2019.01.037.

(34) Cha, D.S., Eun, J.S., Jeon, H. Anti-Inflammatory and Antinociceptive Properties of the Leaves of Eriobotrya Japonica. J. Ethnopharmacol. 2011, 134 (2), 305-312.

(35) Kim, J. Y.; Wang, Y.; Uddin, Z.; Song, Y. H.; Li, Z. P.; Jenis, J.; Park, K. H. Competitive Neutrophil Elastase Inhibitory Isoflavones from the Roots of Flemingia Philippinensis. Bioorg. Chem. 2018, 78, 249-257. https://doi.org/10.1016/j.bioorg.2018.03.024.

(36) M. Chen, S.Q. Luo, J. H. C. Studies on the Chemical Constituents of Flemingia Philippinensis. Acta Pharm. Sin. 1991, 26, 42-48.

(37) H. Li, M. Yang, J. Miao, X. M. Simultaneous Chromatographic Fingerprinting and Quantitative Analysis of Flemingia Philippinensis by LC-DAD. Chromatographia 2009, 70, 447-454.

(38) Melzig, M. F.; Henke, K. Inhibition of Thrombin Activity by Selected Natural Products in Comparison to Neutrophil Elastase. Planta Med. 2005, 71 (8), 787-789. https://doi.org/10.1055/s-2005-871253.

(39) Xing, X.; Yang, X.; Cao, Y. Study of Ellagic Acid as a Natural Elastase Inhibitor by Spectroscopic Methods. J. Appl. Spectrosc. 2016, 83 (1), 149-155. https://doi.org/10.1007/s10812-016-0259-4.

(40) Steinbrecher, T.; Case, D. A.; Labahn, A. A Multistep Approach to Structure-Based Drug Design: Studying Ligand Binding at the Human Neutrophil Elastase. J. Med. Chem. 2006, 49 (6), 1837-1844. https://doi.org/10.1021/jm0505720.

(41) Filip, R.; López, P.; Giberti, G.; Coussio, J.; Ferraro, G. Phenolic Compounds in Seven South American Ilex Species. Fitoterapia 2001, 72 (7), 774-778.

(42) Tatefuji, T.; Izumi, N.; Ohta, T.; Arai, S.; Ikeda, M.; Kurimoto, M. Isolation and Identification of Compounds from Brazilian Propolis Which Enhance Macrophage Spreading and Mobility. Biol. Pharm. Bull. 1996, 19 (7), 966-970.

(43) Góngora, L.; Giner, R. M.; Máñez, S.; Recio, M. del C.; Schinella, G.; Ríos, J. L. Effects of Caffeoyl Conjugates of Isoprenyl-Hydroquinone Glucoside and Quinic Acid on Leukocyte Function. Life Sci. 2002, 71 (25), 2995-3004.

(44) Choi, S. Z.; Lee, S. O.; Choi, S. U.; Lee, K. R. A New Sesquiterpene Hydroperoxide from the Aerial Parts of Aster Oharai. Arch. Pharm. Res. 2003, 26 (7), 521-525.

(45) Hrenn, A.; Steinbrecher, T.; Labahn, A.; Schwager, J.; Schempp, C. M.; Merfort, I. Plant Phenolics Inhibit Neutrophil Elastase. Planta Med. 2006, 72 (12), 1127-1131. https://doi.org/10.1055/s-2006-946700.

(46) Sartor, L.; Pezzato, E.; Garbisa, S. (-)Epigallocatechin-3-Gallate Inhibits Leukocyte Elastase: Potential of the Phyto-Factor in Hindering Inflammation, Emphysema, and Invasion. J. Leukoc. Biol. 2002, 71 (1), 73-79.

(47) Leu, S. J.; Lin, Y. P.; Lin, R. D.; Wen, C. L.; Cheng, K. T.; Hsu, F. L.; Lee, M. H. Phenolic Constituents of Malus Doumeri Var. Formosana in the Field of Skin Care. Biol. Pharm. Bull. 2006, 29 (4), 740-745.

(48) R.K., S.; a., R.; M., M.; V.K., D.; J., D.; a.K., J. Review on Skin Aging and Compilation of Scientific Validated Medicinal Plants, Prominence to Flourish a Better Research Reconnoiters in Herbal Cosmetic. Research Journal of Medicinal Plant. 2013, pp 1-22. https://doi.org/10.3923/rjmp.2013.1.22.

(49) Kacem, R.; Meraihi, Z. EŜects of Essential Oil Extracted from Nigella Sativa (L.) Seeds and Its Main Components on Human Neutrophil Elastase Activity. Yakugaku Zasshi 2006, 126 (4), 301-305. https://doi.org/10.1248/yakushi.126.301.

(50) Ying, Q. L.; Rinehart, a R.; Simon, S. R.; Cheronis, J. C. Inhibition of Human Leucocyte Elastase by Ursolic Acid. Evidence for a Binding Site for Pentacyclic Triterpenes. Biochem. J. 1991, 277, 521-526. https://doi.org//pmc/articles/PMC1151264/.

(51) Feng, L.; Liu, X.; Zhu, W.; Guo, F.; Wu, Y.; Wang, R.; Chen, K.; Huang, C.; Li, Y. Inhibition of Human Neutrophil Elastase by Pentacyclic Triterpenes. PLoS One 2013, 8 (12), 1-11. https://doi.org/10.1371/journal.pone.0082794.

(52) Siedle, B.; Cisielski, S.; Murillo, R.; Lo, B.; Castro, V.; Klaas, C. A.; Hucke, O.; Labahn, A.; Melzig, M. F.; Merfort, I.; Rica, C.; Quimica, E. De; Rica, U. D. C.; Jose, S. Sesquiterpene Lactones as Inhibitors of Human Neutrophil Elastase. Bioorg. Med. Chem. 2002, 10, 2855-2861.

(53) Selenge, E.; Odontuya, G.; Murata, T.; Sasaki, K.; Kobayashi, K.; Batkhuu, J.; Yoshizaki, F. Phytochemical Constituents of Mongolian Traditional Medicinal Plants, Chamaerhodos Erecta and C. Altaica, and Its Constituents Prevents the Extracellular Matrix Degradation Factors. J. Nat. Med. 2013, 67 (4), 867-875. https://doi.org/10.1007/s11418-013-0748-1.

(54) Selenge, E.; Murata, T.; Tanaka, S.; Sasaki, K.; Batkhuu, J.; Yoshizaki, F. Monoterpene Glycosides, Phenylpropanoids, and Acacetin Glycosides from Dracocephalum Foetidum. Phytochemistry 2014, 101, 91-100. https://doi.org/10.1016/j.phytochem.2014.02.007.

(55) Michel, P.; Owczarek, A.; Matczak, M.; Kosno, M.; Szymański, P.; Mikiciuk-Olasik, E.; Kilanowicz, A.; Wesołowski, W.; Olszewska, M. A. Metabolite Profiling of Eastern Teaberry (Gaultheria Procumbens L.) Lipophilic Leaf Extracts with Hyaluronidase and Lipoxygenase Inhibitory Activity. Molecules 2017, 22 (3), 1-16. https://doi.org/10.3390/molecules22030412.

(56) Liu, W.-R.; Qiao, W.-L.; Liu, Z.-Z.; Wang, X.-H.; Jiang, R.; Li, S.-Y.; Shi, R.-B.; She, G.-M. Gaultheria: Phytochemical and Pharmacological Characteristics. Molecules 2013, 18 (10), 12071-12108. https://doi.org/10.3390/molecules181012071.

(57) Nikolic, M.; Markovic, T.; Mojovic, M.; Pejin, B.; Savic, A. P.; T.; Markovic, D.; Stevic, T.; Sokovic, M. Chemical Composition and Biological Activity of Gaultheria Procumbens L. Essential Oil. Ind. Crop. Prod. 2013, 49, 561-567.

(58) Scotti, L.; Kumar Singla, R.; Mitsugu Ishiki, H.; Jaime B. Mendonca, F.; Sobral da Silva, M.; Maria Barbosa Filho, J.; Tullius Scotti, M. Recent Advancement in Natural Hyaluronidase Inhibitors. Curr. Top. Med. Chem. 2016, 16 (23), 2525-2531. https://doi.org/10.2174/1568026616666160414123857.

(59) Citalingam, K.; Zareen, S.; Shaari, K.; Ahmad, S. Effects of Payena Dasyphylla (Miq.) on Hyaluronidase Enzyme Activity and Metalloproteinases Protein Expressions in Interleukin-1β Stimulated Human Chondrocytes Cells. BMC Complement. Altern. Med. 2013, 13 (1), 213. https://doi.org/10.1186/1472-6882-13-213.

(60) Ippoushi, K.; Yamaguchi, Y.; Itou, H.; Azuma, K.; Higashio, H. Evaluation of Inhibitory Effects of Vegetables and Herbs on Hyaluronidase and Identification of Rosmarinic Acid as a Hyaluronidase Inhibitor in Lemon Balm (Melissa Officinalis L.). Food Sci. Technol. Res. 2000, 6 (1), 74-77.

(61) Lee, K. K.; Cho, J. J.; Park, E. J.; Choi, J. D. Anti-Elastase and Anti-Hyaluronidase of Phenolic Substance from Areca Catechu as a New Anti-Ageing Agent. Int. J. Cosmet. Sci. 2001, 23 (6), 341-346. https://doi.org/10.1046/j.0412-5463.2001.00102.x.

(62) Sendker, J.; Böker, I.; Lengers, I.; Brandt, S.; Jose, J.; Stark, T.; Hofmann, T.; Fink, C.; Abdel-Aziz, H.; Hensel, A. Phytochemical Characterization of Low Molecular Weight Constituents from Marshmallow Roots (Althaea Officinalis) and Inhibiting Effects of the Aqueous Extract on Human Hyaluronidase-1. J. Nat. Prod. 2017, 80 (2), 290-297. https://doi.org/10.1021/acs.jnatprod.6b00670.

(63) González-Peña, D.; Colina-Coca, C.; Char, C. D.; Cano, M. P.; De Ancos, B.; Sánchez-Moreno, C. Hyaluronidase Inhibiting Activity and Radical Scavenging Potential of Flavonols in Processed Onion. J. Agric. Food Chem. 2013, 61 (20), 4862-4872. https://doi.org/10.1021/jf3054356.

(64) Orlando, Z.; Lengers, I.; Melzig, M. F.; Buschauer, A.; Hensel, A.; Jose, J. Autodisplay of Human Hyaluronidase Hyal-1 on Escherichia Coli and Identification of Plant-Derived Enzyme Inhibitors. Molecules 2015, 20 (9), 15449-15468. https://doi.org/10.3390/molecules200915449.

(65) Załuski, D.; Olech, M.; Kuźniewski, R.; Verpoorte, R.; Nowak, R.; Smolarz, H. D. LC-ESI-MS/MS Profiling of Phenolics from Eleutherococcus Spp. Inflorescences, Structure-Activity Relationship as Antioxidants, Inhibitors of Hyaluronidase and Acetylcholinesterase. Saudi Pharm. J. 2017, 25 (5), 734-743. https://doi.org/10.1016/j.jsps.2016.11.002.

(66) Liu, M.; Yin, H.; Dong, J.; Xiao, L.; Liu, G.; Qian, Z.; Miao, J. Inhibition and Interaction with Hyaluronidase by Compounds from Hop (Humulus Lupulus l) Flowers. Asian J. Chem. 2013, 25 (18), 10262-10266. https://doi.org/10.14233/ajchem.2013.15260.

(67) Addotey, J. N.; Lengers, I.; Jose, J.; Gampe, N.; Béni, S.; Petereit, F.; Hensel, A. Isoflavonoids with Inhibiting Effects on Human Hyaluronidase-1 and Norneolignan Clitorienolactone B from Ononis Spinosa L. Root Extract. Fitoterapia 2018, 130 (August), 169-174. https://doi.org/10.1016/j.fitote.2018.08.013.

(68) Muhit, M. A.; Izumikawa, M.; Umehara, K.; Noguchi, H. Phenolic Constituents of the Bangladeshi Medicinal Plant Pothos Scandens and Their Anti-Estrogenic, Hyaluronidase Inhibition, and Histamine Release Inhibitory Activities. Phytochemistry 2016, 121, 30-37. https://doi.org/10.1016/j.phytochem.2015.10.009.

(69) Addotey, J. N.; Lengers, I.; Jose, J.; Hensel, A. Hyal-1 Inhibitors from the Leaves of Phyllanthus Muellerianus (Kuntze) Excell. J. Ethnopharmacol. 2019, 236 (November 2018), 326-335. https://doi.org/10.1016/j.jep.2019.03.022.

(70) Brusotti, G., Cesari, I., Frassà, G., Grisoli, P., Dacarro, C., Caccialanza, G. Antimicrobial Properties of Stem Bark Extracts from Phyllanthus Muellerianus (Kuntze) Excell. J. Ethnopharmacol. 2011, 135 (3), 797-800.

(71) Murata, T.; Miyase, T.; Yoshizaki, F. Hyaluronidase Inhibitors from Keiskea Japonica. Chem. Pharm. Bull. 2012, 60 (1), 121-128. https://doi.org/10.1248/cpb.60.121.

(72) Murata, T.; Suzuki, A.; Mafune, N.; Sato, E.; Miyase, T.; Yoshizaki, F. Triterpene Saponins from Clethra Barbinervis and Their Hyaluronidase Inhibitory Activities. Chem. Pharm. Bull. 2013, 61 (2), 134-143. https://doi.org/10.1248/cpb.c12-00566.

(73) Perera, H. D. S. M.; Samarasekera, J. K. R. R.; Handunnetti, S. M.; Weerasena, O. V. D. S. J.; Weeratunga, H. D.; Jabeen, A.; Choudhary, M. I. In Vitro Pro-Inflammatory Enzyme Inhibition and Anti-Oxidant Potential of Selected Sri Lankan Medicinal Plants. BMC Complement. Altern. Med. 2018, 18 (1), 1-15. https://doi.org/10.1186/s12906-018-2335-1.

(74) Abdullah, N. H.; Thomas, N. F.; Sivasothy, Y.; Lee, V. S.; Liew, S. Y.; Noorbatcha, I. A.; Awang, K. Hyaluronidase Inhibitory Activity of Pentacylic Triterpenoids from Prismatomeris Tetrandra (Roxb.) K. Schum: Isolation, Synthesis and QSAR Study. Int. J. Mol. Sci. 2016, 17 (2). https://doi.org/10.3390/ijms17020143.

(75) Nishida, Y.; Sugahara, S.; Wada, K.; Toyohisa, D.; Tanaka, T.; Ono, M.; Yasuda, S. Inhibitory Effects of the Ethyl Acetate Extract from Bulbs of Scilla Scilloides on Lipoxygenase and Hyaluronidase Activities. Pharm. Biol. 2014, 52 (10), 1351-1357. https://doi.org/10.3109/13880209.2014.891140.

(76) Iwanaga, A.; Kusano, G.; Warashina, T.; Miyase, T. Hyaluronidase Inhibitors from "Cimicifugae Rhizoma" (a Mixture of the Rhizomes of Cimicifuga Dahurica and C. Heracleifolia). J. Nat. Prod. 2010, 73 (4), 573-578. https://doi.org/10.1021/np900675n.

(77) Sakai, S.; Ochiai, H.; Nakajima, K.; Terasawa, K. Inhibitory Effect of Ferulic Acid on Macrophage Inflammatory Protein-2 Production in a Murine Macrophage Cell Line, RAW264.7. Cytokine 1997, 9 (4), 242-248. https://doi.org/10.1006/cyto.1996.0160.

(78) Mukherjee, P. K.; Kumar, V.; Kumar, N. S.; Heinrich, M. The Ayurvedic Medicine Clitoria Ternatea--from Traditional Use to Scientific Assessment. J. Ethnopharmacol. 2008, 120 (3), 291-301. https://doi.org/10.1016/j.jep.2008.09.009.

(79) Maity, N.; Nema, N. K.; Sarkar, B. K.; Mukherjee, P. K. Standardized Clitoria Ternatea Leaf Extract as Hyaluronidase, Elastase and Matrix-Metalloproteinase-1 Inhibitor. Indian J. Pharmacol. 2012, 44 (5), 584-587. https://doi.org/10.4103/0253-7613.100381.

(80) Murata, T.; Watahiki, M.; Tanaka, Y.; Miyase, T.; Yoshizaki, F. Hyaluronidase Inhibitors from Takuran, Lycopus Lucidus. Chem. Pharm. Bull. 2010, 58 (3), 394-397. https://doi.org/10.1248/cpb.58.394.

(81) Murata, T.; Miyase, T.; Yoshizaki, F. Hyaluronidase Inhibitory Rosmarinic Acid Derivatives from Meehania Urticifolia. Chem. Pharm. Bull. 2011, 59 (1), 88-95. https://doi.org/10.1248/cpb.59.88.

(82) Patil, S.; Bhadane, B.; Shirsath, L.; Patil, R.; Chaudhari, B. Steroidal Fraction of Carissa Carandas L. Inhibits Microbial Hyaluronidase Activity by Mixed Inhibition Mechanism. Prep. Biochem. Biotechnol. 2019, 49 (3), 298-306. https://doi.org/10.1080/10826068.2018.1541811.

(83) Sumantran, V. N.; Kulkarni, A. A.; Harsulkar, A.; Wele, A.; Koppikar, S. J.; Chandwaskar, R.; Gaire, V.; Dalvi, M.; Wagh, U. V. Hyaluronidase and Collagenase Inhibitory Activities of the Herbal Formulation Triphala Guggulu. J. Biosci. 2007, 32 (4), 755-761.

(84) Załuski, D.; Cieśla, Ł.; Janeczko, Z. Chapter 7 - The Structure-Activity Relationships of Plant Secondary Metabolites with Antimicrobial, Free Radical Scavenging and Inhibitory Activity toward Selected Enzymes; 2015; Vol. 45. https://doi.org/10.1016/B978-0-444-63473-3.00007-1.

(85) Fayad, S.; Nehmé, R.; Tannoury, M.; Lesellier, E.; Pichon, C.; Morin, P. Macroalga Padina Pavonica Water Extracts Obtained by Pressurized Liquid Extraction and Microwave-Assisted Extraction Inhibit Hyaluronidase Activity as Shown by Capillary Electrophoresis. J. Chromatogr. A 2017, 1497, 19-27. https://doi.org/10.1016/j.chroma.2017.03.033.

(86) Murata, T.; Sasaki, K.; Sato, K.; Yoshizaki, F.; Yamada, H.; Mutoh, H.; Umehara, K.; Miyase, T.; Warashina, T.; Aoshima, H.; Tabata, H.; Matsubara, K. Matrix Metalloproteinase-2 Inhibitors from Clinopodium Chinense Var. Parviflorum. J. Nat. Prod. 2009, 72 (8), 1379-1384. https://doi.org/10.1021/np800781t.

(87) Nagai, M.; Noguchi, M.; Iizuka, T.; Otani, K.; Kamata, K. Vasodilator Effects of Des(Alpha-Carboxy-3,4-Dihydroxyphenethyl)Lithospermic Acid (8-Epiblechnic Acid), a Derivative of Lithospermic Acids in Salviae Miltiorrhizae Radix. Biol. Pharm. Bull. 1996, 19 (2), 228-232.

(88) P. K. Agrawal and R. P. Rastogi. "13C NMR Spectroscopy of Flavonoids,." Heterocycles 1981, 16, 2181-2236.

(89) Aoshima, H.; Miyase, T.; Warashina, T. Caffeic Acid Oligomers with Hyaluronidase Inhibitory Activity from Clinopodium Gracile. Chem. Pharm. Bull. 2012, 60 (4), 499-507. https://doi.org/10.1248/cpb.60.499.

(90) Pujiarti, R.; Ohtani, Y. and Ichura, H. Antioxidant, Anti-Hyaluronidase and Antifungal Activities of Melaleuca Leucadendron Linn. Leaf Oils. J. Wood Sci. 2012, 58, 429-436.

(91) Moon, S.; Kim, K.; Lee, N.; Han, Y.; Nah, S.; Cho, S. G.; Park, Y.; Paik, H. Inhibitory Effects of Naringenin and Its Novel Derivatives on Hyaluronidase. Food Sci. Biotechnol. 2009, 18 (1), 267-270.

(92) Zeng, H. J.; Yang, R.; You, J.; Qu, L. B.; Sun, Y. J. Spectroscopic and Docking Studies on the Binding of Liquiritigenin with Hyaluronidase for Antiallergic Mechanism. Scientifica (Cairo). 2016, 2016. https://doi.org/10.1155/2016/9178097.

(93) Khan, M. T. H. Novel Tyrosinase Inhibitors From Natural Resources - Their Computational Studies. Curr. Med. Chem. 2012, 19 (14), 2262-2272. https://doi.org/CMC-EPUB-20120313-011 [pii].

(94) Ryu, H. W.; Song, H. H.; Shin, I. S.; Cho, B. O.; Jeong, S. H.; Kim, D. Y.; Ahn, K. S.; Oh, S. R. Suffruticosol A Isolated from Paeonia Lactiflora Seedcases Attenuates Airway Inflammation in Mice Induced by Cigarette Smoke and LPS Exposure. J. Funct. Foods 2015, 17, 774-784. https://doi.org/10.1016/j.jff.2015.06.036.

(95) Chen, W.-C.; Tseng, T.-S.; Hsiao, N.-W.; Lin, Y.-L.; Wen, Z.-H.; Tsai, C.-C.; Lee, Y.-C.; Lin, H.-H.; Tsai, K.-C. Discovery of Highly Potent Tyrosinase Inhibitor, T1, with Significant Anti-Melanogenesis Ability by Zebrafish in Vivo Assay and Computational Molecular Modeling. Sci. Rep. 2015, 5 (1), 7995. https://doi.org/10.1038/srep07995.

(96) Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin Whitening Agents: Medicinal Chemistry Perspective of Tyrosinase Inhibitors. J. Enzyme Inhib. Med. Chem. 2017, 32 (1), 403-425. https://doi.org/10.1080/14756366.2016.1256882.

(97) Limtrakul, P.; Yodkeeree, S.; Thippraphan, P.; Punfa, W.; Srisomboon, J. Anti-Aging and Tyrosinase Inhibition Effects of Cassia Fistula Flower Butanolic Extract. BMC Complement. Altern. Med. 2016, 16 (1), 497. https://doi.org/10.1186/s12906-016-1484-3.

(98) Luximon-Ramma, A.; Bahorun, T.; Soobrattee, M. A.; Aruoma, O. I. Antioxidant Activities of Phenolic, Proanthocyanidin, and Flavonoid Components in Extracts of Cassia Fistula. J. Agric. Food Chem. 2002, 50 (18), 5042-5047.

(99) Manonmani, G.; Bhavapriya, V.; Kalpana, S.; Govindasamy, S.; Apparanantham, T. Antioxidant Activity of Cassia Fistula (Linn.) Flowers in Alloxan Induced Diabetic Rats. J. Ethnopharmacol. 2005, 97 (1), 39-42. https://doi.org/10.1016/j.jep.2004.09.051.

(100) Bhalodia, N. R.; Shukla, V. J. Antibacterial and Antifungal Activities from Leaf Extracts of Cassia Fistula l.: An Ethnomedicinal Plant. J. Adv. Pharm. Technol. Res. 2011, 2 (2), 104-109. https://doi.org/10.4103/2231-4040.82956.

(101) Dai, Y.; Zhou, G.; Kurihara, H.; Ye, W.; Yao, X. Biphenyl Glycosides from the Fruit of Pyracantha f Ortuneana. J. Nat. Prod. 2006, 69 (7), 1022-1024. https://doi.org/10.1021/np0600853.

(102) Wang C.; Jia, Z. Lignan, Phenylpropanoid and Iridoid Glycosides from Pedicularis Torta. Phytochemistry 1997, 45, 159-166.

(103) Huang, X. X.; Liu, Q. B.; Wu, J.; Yu, L. H.; Cong, Q.; Zhang, Y.; Lou, L. L.; Li, L. Z.; Song, S. J. Antioxidant and Tyrosinase Inhibitory Effects of Neolignan Glycosides from Crataegus Pinnatifida Seeds. Planta Med. 2014, 80 (18), 1732-1738. https://doi.org/10.1055/s-0034-1383253.

(104) Cömert Önder, F.; Ay, M.; Aydoğan Türkoğlu, S.; Tura Köçkar, F.; Çelik, A. Antiproliferative Activity of Humulus Lupulus Extracts on Human Hepatoma (Hep3B), Colon (HT-29) Cancer Cells and Proteases, Tyrosinase, β -Lactamase Enzyme Inhibition Studies. J. Enzyme Inhib. Med. Chem. 2016, 31 (1), 90-98. https://doi.org/10.3109/14756366.2015.1004060.

(105) Arung, E. T.; Shimizu, K.; Kondo, R. Structure-Activity Relationship of Prenyl-Substituted Polyphenols from Artocarpus Heterophyllus as Inhibitors of Melanin Biosynthesis in Cultured Melanoma Cells. Chem. Biodivers. 2007, 4 (9), 2166-2171. https://doi.org/10.1002/cbdv.200790173.

(106) Jin, Y. J.; Lin, C. C.; Lu, T. M.; Li, J. H.; Chen, I. S.; Kuo, Y. H.; Ko, H. H. Chemical Constituents Derived from Artocarpus Xanthocarpus as Inhibitors of Melanin Biosynthesis. Phytochemistry 2015, 117, 424-435. https://doi.org/10.1016/j.phytochem.2015.07.003.

(107) Ko, H.-H.; Jin, Y.-J.; Lu, T.-M.; Chen, I.-S. A Novel Monoterpene-Stilbene Adduct with a 4,4-Dimethyl-2,3-Diphenylchromane Skeleton from Artocarpus Xanthocarpus. Chem. Biodivers. 2013, 10 (7), 1269-1275. https://doi.org/10.1002/cbdv.201200377.

(108) Leu, S. J.; Lin, Y. P.; Lin, R. D.; Wen, C. L.; Cheng, K. T.; Hsu, F. L.; Lee, M. H. Phenolic Constituents of Malus Doumeri Var. Formosana in the Field of Skin Care. Biol. Pharm. Bull. 2006, 29 (4), 740-745. https://doi.org/10.1248/bpb.29.740.

(109) Lin, Y. P.; Hsu, F. L.; Chen, C. S.; Chern, J. W.; Lee, M. H. Constituents from the Formosan Apple Reduce Tyrosinase Activity in Human Epidermal Melanocytes. Phytochemistry 2007, 68 (8), 1189-1199. https://doi.org/10.1016/j.phytochem.2007.02.001.

(110) Lee, M. G.; Kuo, S. Y.; Yen, S. Y.; Hsu, H. F.; Leung, C. H.; Ma, D. L.; Wen, Z. H.; Wang, H. M. D. Evaluation of Cinnamomum Osmophloeum Kanehira Extracts on Tyrosinase Suppressor, Wound Repair Promoter, and Antioxidant. Sci. World J. 2015, 2015. https://doi.org/10.1155/2015/303415.

(111) Wang, Z.; Hwang, S. H.; Huang, B.; Lim, S. S. Identification of Tyrosinase Specific Inhibitors from Xanthium Strumarium Fruit Extract Using Ultrafiltration-High Performance Liquid Chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 1002, 319-328. https://doi.org/10.1016/j.jchromb.2015.08.030.

(112) Bajpai, V. K.; Park, Y.-H.; Na, M.; Kang, S. C. α-Glucosidase and Tyrosinase Inhibitory Effects of an Abietane Type Diterpenoid Taxoquinone from Metasequoia Glyptostroboides. BMC Complement. Altern. Med. 2015, 15 (1), 84. https://doi.org/10.1186/s12906-015-0626-3.

(113) Batubara, I.; Kuspradini, H.; Mitsunaga, T. Anti-Acne and Tyrosinase Inhibition Properties of Taxifolin and Some Flavanonol Rhamnosides 45 from Kempas (Koompassia Malaccensis) Anti-Acne and Tyrosinase Inhibition Properties of Taxifolin and Some Flavanonol Rhamnosides from Kempas (Koompassia Malaccensis).

(114) Jones, K.; Hughes, J.; Hong, M.; Jia, Q.; Orndorff, S. Modulation of Melanogenesis by Aloesin: A Competitive Inhibitor of Tyrosinase. Pigment Cell Res. 2002, 15 (5), 335-340. https://doi.org/10.1034/j.1600-0749.2002.02014.x.

(115) Yagi, A.; Kanbara, T.; Morinobu, N. Inhibition of Mushroom-Tyrosinase by Aloe Extract. Planta Med. 1987, 53 (6), 515-517. https://doi.org/10.1055/s-2006-962798.

(116) Jin, Y. H.; Lee, S. J.; Chung, M. H.; Park, J. H.; Park, Y. I.; Cho, T. H.; Lee, S. K. Aloesin and Arbutin Inhibit Tyrosinase Activity in a Synergistic Manner via a Different Action Mechanism. Arch. Pharm. Res. 1999, 22 (3), 232-236.

(117) Choi, S.; Lee, S.-K.; Kim, J.-E.; Chung, M.-H.; Park, Y.-I. Aloesin Inhibits Hyperpigmentation Induced by UV Radiation. Clin. Exp. Dermatol. 2002, 27 (6), 513-515.

(118) Wu, B.; Chen, J.; Qu, H.; Cheng, Y. Complex Sesquiterpenoids with Tyrosinase Inhibitory Activity from the Leaves of Chloranthus Tianmushanensis. J. Nat. Prod. 2008, 71 (5), 877-880. https://doi.org/10.1021/np070623r.

(119) Kubo, I.; Kinst-Hori, I.; Chaudhuri, S. K.; Kubo, Y.; Sánchez, Y.; Ogura, T. Flavonols from Heterotheca Inuloides: Tyrosinase Inhibitory Activity and Structural Criteria. Bioorganic Med. Chem. 2000, 8 (7), 1749-1755. https://doi.org/10.1016/S0968-0896(00)00102-4.

(120) Kubo, I.; Yokokawa, Y. Two Tyrosinase Inhibiting Flavonol Glycosides from Buddleia Coriacea. Phytochemistry 1992, 31 (3), 1075-1077. https://doi.org/10.1016/0031-9422(92)80084-R.

(121) Biswas, R.; Chanda, J.; Kar, A.; Mukherjee, P. K. Tyrosinase Inhibitory Mechanism of Betulinic Acid from Dillenia Indica. Food Chem. 2017, 232 (April), 689-696. https://doi.org/10.1016/j.foodchem.2017.04.008.

(122) Muñoz, E.; Avila, J. G.; Alarcón, J.; Kubo, I.; Werner, E.; Céspedes, C. L. Tyrosinase Inhibitors from Calceolaria Integrifolia s.l.: Calceolaria Talcana Aerial Parts. J. Agric. Food Chem. 2013, 61 (18), 4336-4343. https://doi.org/10.1021/jf400531h.

(123) Biswas, R.; Mukherjee, P. K.; Chaudhary, S. K. Tyrosinase Inhibition Kinetic Studies of Standardized Extract of Berberis Aristata. Nat. Prod. Res. 2016, 30 (12), 1451-1454. https://doi.org/10.1080/14786419.2015.1062376.

(124) Lee, C. C.; Chen, Y. T.; Chiu, C. C.; Liao, W. T.; Liu, Y. C.; David Wang, H. M. Polygonum Cuspidatum Extracts as Bioactive Antioxidaion, Anti-Tyrosinase, Immune Stimulation and Anticancer Agents. J. Biosci. Bioeng. 2015, 119 (4), 464-469. https://doi.org/10.1016/j.jbiosc.2014.09.008.

(125) Leu, Y.-L.; Hwang, T.-L.; Hu, J.-W.; Fang, J.-Y. Anthraquinones from Polygonum Cuspidatum as Tyrosinase Inhibitors for Dermal Use. Phytother. Res. 2008, 22 (4), 552-556. https://doi.org/10.1002/ptr.2324.

(126) Lee, M. H.; Kao, L.; and Lin, C. C. Comparison of the Antioxidant and Transmembrane Permeative Activities of the Different Polygonum Cuspidatum Extracts in Phospholipid-Based Microemulsions. J. Agric. Food Chem. 2011, 59, 9135-9141.

(127) Zheng, Z.-P.; Zhu, Q.; Fan, C.-L.; Tan, H.-Y.; Wang, M. Phenolic Tyrosinase Inhibitors from the Stems of Cudrania Cochinchinensis. Food Funct. 2011, 2 (5), 259-264. https://doi.org/10.1039/c1fo10033e.

(128) Zhang, P.C.; Feng Z.M., and W. Y. Flavonoids, Including an Unusual Flavonoids-Mg2+ Salt, from Roots of Cudrania Cochinchinensis. Phytochemistry 2005, 66, 2759-2765.

(129) Nguyen, N. T.; Nguyen, M. H. K.; Nguyen, H. X.; Bui, N. K. N.; Nguyen, M. T. T. Tyrosinase Inhibitors from the Wood of Artocarpus Heterophyllus. J. Nat. Prod. 2012, 75 (11), 1951-1955. https://doi.org/10.1021/np300576w.

(130) Zheng, Z.-P.; Cheng, K.-W.; To, J. T.-K.; Li, H.; Wang, M. Isolation of Tyrosinase Inhibitors from Artocarpus Heterophyllus and Use of Its Extract as Antibrowning Agent. Mol. Nutr. Food Res. 2008, 52 (12), 1530-1538. https://doi.org/10.1002/mnfr.200700481.

(131) Arung, E. T.; Yoshikawa, K.; Shimizu, K.; Kondo, R. Isoprenoid-Substituted Flavonoids from Wood of Artocarpus Heterophyllus on B16 Melanoma Cells: Cytotoxicity and Structural Criteria. Fitoterapia 2010, 81 (2), 120-123. https://doi.org/10.1016/j.fitote.2009.08.001.

(132) Shou, Q.-Y.; Fu, R.-Z.; Tan, Q.; Shen, Z.-W. Geranylated Flavonoids from the Roots of Campylotropis Hirtella and Their Immunosuppressive Activities. J. Agric. Food Chem. 2009, 57 (15), 6712-6719. https://doi.org/10.1021/jf9009894.

(133) Tan, X.; Song, Y. H.; Park, C.; Lee, K. W.; Kim, J. Y.; Kim, D. W.; Kim, K. D.; Lee, K. W.; Curtis-Long, M. J.; Park, K. H. Highly Potent Tyrosinase Inhibitor, Neorauflavane from Campylotropis Hirtella and Inhibitory Mechanism with Molecular Docking. Bioorganic Med. Chem. 2016, 24 (2), 153-159. https://doi.org/10.1016/j.bmc.2015.11.040.

(134) Zolghadri, S.; Bahrami, A.; Hassan Khan, M. T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A. A. A Comprehensive Review on Tyrosinase Inhibitors. J. Enzyme Inhib. Med. Chem. 2019, 34 (1), 279-309. https://doi.org/10.1080/14756366.2018.1545767.

(135) Wang, Y.; Curtis-Long, M. J.; Lee, B. W.; Yuk, H. J.; Kim, D. W.; Tan, X. F.; Park, K. H. Inhibition of Tyrosinase Activity by Polyphenol Compounds from Flemingia Philippinensis Roots. Bioorganic Med. Chem. 2014, 22 (3), 1115-1120. https://doi.org/10.1016/j.bmc.2013.12.047.

(136) Hubert, J.; Angelis, A.; Aligiannis, N.; Rosalia, M.; Abedini, A.; Bakiri, A.; Reynaud, R.; Nuzillard, J. M.; Gangloff, S. C.; Skaltsounis, A. L.; Renault, J. H. In Vitro Dermo-Cosmetic Evaluation of Bark Extracts from Common Temperate Trees. Planta Med. 2016, 82 (15), 1351-1358. https://doi.org/10.1055/s-0042-110180.

(137) Lin, Q. M.; Wang, Y.; Yu, J. H.; Liu, Y. L.; Wu, X.; He, X. R.; Zhou, Z. W. Tyrosinase Inhibitors from the Leaves of Eucalyptus Globulus. Fitoterapia 2019, 139, 104418. https://doi.org/10.1016/j.fitote.2019.104418.

(138) Shi, F.; Xie, L.; Lin, Q.; Tong, C.; Fu, Q.; Xu, J.; Xiao, J.; Shi, S. Profiling of Tyrosinase Inhibitors in Mango Leaves for a Sustainable Agro-Industry. Food Chem. 2020, 312, 126042. https://doi.org/10.1016/j.foodchem.2019.126042.

(139) Yang, Y.; Sun, X.; Ni, H.; Du, X.; Chen, F.; Jiang, Z.; Li, Q. Identification and Characterization of the Tyrosinase Inhibitory Activity of Caffeine from Camellia Pollen; 2019; Vol. 67. https://doi.org/10.1021/acs.jafc.9b04929.

(140) Castañeda-Loaiza, V.; Placines, C.; Rodrigues, M. J.; Pereira, C. G.; Zengin, G.; Neng, N. R.; Nogueira, J. M. F.; Custódio, L. In Vitro Enzyme Inhibitory and Anti-Oxidant Properties, Cytotoxicity and Chemical Composition of the Halophyte Malcolmia Littorea (L.) R.Br. (Brassicaceae). Nat. Prod. Res. 2020, 0 (0), 1-4. https://doi.org/10.1080/14786419.2020.1719484.

(141) Sinan, K. I.; Llorent-Martínez, E. J.; Bene, K.; Mahomoodally, M. F.; Lobine, D.; Aktumsek, A.; Zengin, G. Novel Insights into the Fruit and Seed Extracts of Morinda Morindoides (Baker) Milne-Redh: HPLC-ESI-Q-TOF-MS Profiling, Antioxidant, and Enzyme Inhibitory Propensities. J. Food Biochem. 2020, 44 (5), 1-9. https://doi.org/10.1111/jfbc.13169.

(142) Cimanga, R., Mukenyi, P., Kambu, O., Tona, G., Apers, S., Totte, J., Vlietinck, A. The Spasmolytic Activity of Extracts and Some Isolated Compounds from the Leaves of Morinda Morindoides (Baker) Milne-Redh. (Rubiaceae). J. Ethnopharmacol. 2010, 127 (2), 215-220.

(143) Marie-Genevieve, O., Robin, O. P., Gregory, G., Catherine, L., & C.; M. Cytotoxic Effect Induced by Morinda Morindoides Leaf Extracts in Human and Murine Leukemia Cells. African J. Biotechnol. 2010, 9 (39), 6560-6565.

(144) Tona, L., Mesia, K., Ngimbi, N., Chrimwami, B., Okond'Ahoka, C.; K., Totte, J. In-Vivo Antimalarial Activity of Cassia Occidentalism, Morinda Morindoides and Phyllanthus Niruri. Ann. Trop. Med. Parasitol. 2001, 95 (1), 47-57.

(145) Placines, C.; Castañeda-Loaiza, V.; Rodrigues, M. J.; Pereira, C. G.; Stefanucci, A.; Mollica, A.; Zengin, G.; Llorent-Martínez, E. J.; Castilho, P. C.; Custódio, L. Phenolic Profile, Toxicity, Enzyme Inhibition, in Silico Studies, and Antioxidant Properties of Cakile Maritima Scop. (Brassicaceae) from Southern Portugal. Plants 2020, 9 (2), 1-24. https://doi.org/10.3390/plants9020142.

(146) Davy, A.J.; Scott, R.; Cordazzo, C. V. Biological Flora of the British Isles: Cakile Maritima Scop. J. Ecol. 2006, 94, 695-71.

(147) Fuochi, V.; Barbagallo, I.; Distefano, A.; Puglisi, F.; Palmeri, R.; Rosa, M.D.I.; Giallongo, C.; Longhitano, L.; Fontana, P.; Sferrazzo, G. . et al. Biological Properties of Cakile Maritima Scop. (Brassicaceae) Extracts. Eur. Rev. Med Pharmacol. Sci. 2019, 23, 2280-2292.

(148) Kim, J. H.; Leem, H. H.; Lee, G. Y. The Guanidine Pseudoalkaloids 10‐methoxy‐ Leonurine and Leonurine Act as Competitive Inhibitors of Tyrosinase. Biomolecules 2020, 10 (2). https://doi.org/10.3390/biom10020174.

(149) Zhong, W.‐M.; Cui, Z.‐M.; Liu, Z.‐K.; Yang, Y.; Wu, D.‐R.; Liu, S.‐H.; Long, H.; Sun, H.‐D.; Dang, Y. ‐J. . X.; W.‐L. Three Minor New Compounds from the Aerial Parts of Leonurus Japonicas. Chinese Chem. Lett. 2015, 26, 1000-1003.

(150) Honisch, C.; Osto, A.; Dupas de Matos, A.; Vincenzi, S.; Ruzza, P. Isolation of a Tyrosinase Inhibitor from Unripe Grapes Juice: A Spectrophotometric Study. Food Chem. 2020, 305 (September 2019), 125506. https://doi.org/10.1016/j.foodchem.2019.125506.

(151) Mutschlechner, B.; Rainer, B.; Schwaiger, S.; Stuppner, H. Tyrosinase Inhibitors from the Aerial Parts of Wulfenia Carinthiaca Jacq. Chem. Biodivers. 2018, 15 (4), 4-11. https://doi.org/10.1002/cbdv.201800014.

(152) Ishihara, A.; Ide, Y.; Bito, T.; Ube, N.; Endo, N.; Sotome, K.; Maekawa, N.; Ueno, K.; Nakagiri, A. Novel Tyrosinase Inhibitors from Liquid Culture of Neolentinus Lepideus. Biosci. Biotechnol. Biochem. 2018, 82 (1), 22-30. https://doi.org/10.1080/09168451.2017.1415125.

(153) Revoltella, S.; Rainer, B.; Waltenberger, B.; Pagitz, K.; Schwaiger, S.; Stuppner, H. HPTLC Autography Based Screening and Isolation of Mushroom Tyrosinase Inhibitors of European Plant Species. Chem. Biodivers. 2019, 16 (3). https://doi.org/10.1002/cbdv.201800541.

(154) Han, E. B.; Chang, B. Y.; Kim, D. S.; Cho, H. K.; Kim, S. Y. Melanogenesis Inhibitory Effect of Aerial Part of Pueraria Thunbergiana in Vitro and in Vivo. Arch. Dermatol. Res. 2014, 307 (1), 57-72. https://doi.org/10.1007/s00403-014-1489-z.

(155) Qu, L.; Song, K.; Zhang, Q.; Guo, J.; Huang, J. Simultaneous Determination of Six Isoflavones from Puerariae Lobatae Radix by CPE-HPLC and Effect of Puerarin on Tyrosinase Activity. Molecules 2020, 25 (2). https://doi.org/10.3390/molecules25020344.

(156) Lim DW, Lee C, Kim IH, K. Y. Anti-Inflammatory Effects of Total Isoflavones from Pueraria Lobata on Cerebral Ischemia in Rats. Molecules 2013, 18 (9), 10404-10412.

(157) Xiong Y, Yang Y, Yang J, Chai H, Li Y, Jia Z, W. Z. Tectoridin, an Isoflavone Glycoside from the Flower of Pueraria Lobata, Prevents Acute Ethanol-Induced Liver Steatosis in Mice. Toxicology 2010, 276 (1), 64-72.

(158) Chai, W. M.; Wei, Q. M.; Deng, W. L.; Zheng, Y. L.; Chen, X. Y.; Huang, Q.; Ou-Yang, C.; Peng, Y. Y. Anti-Melanogenesis Properties of Condensed Tannins from: Vigna Angularis Seeds with Potent Antioxidant and DNA Damage Protection Activities. Food Funct. 2019, 10 (1), 99-111. https://doi.org/10.1039/c8fo01979g.

(159) Wolfender, J.-L.; Marti, G.; Thomas, A.; Bertrand, S. Current Approaches and Challenges for the Metabolite Profiling of Complex Natural Extracts. J. Chromatogr. A 2015, 1382, 136-164. https://doi.org/10.1016/j.chroma.2014.10.091.

(160) Brewer, M. S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10 (4), 221-247. https://doi.org/10.1111/j.1541-4337.2011.00156.x.

(161) Zheng, Z.-P. P.; Tan, H.-Y. Y.; Chen, J.; Wang, M. Characterization of Tyrosinase Inhibitors in the Twigs of Cudrania Tricuspidata and Their Structure-Activity Relationship Study. Fitoterapia 2013, 84 (1), 242-247. https://doi.org/10.1016/j.fitote.2012.12.006.

(162) Hano, Y.; Matsumoto, Y.; Shinohara, K., Sun, J.Y.; Nomura, T. Cudraflavones C and D, Two New Prenylflavones from the Root Bark of Cudrania Tricuspidata (Carr.). Bur. Heterocycles 1990, 31, 1339-1341.

(163) Zheng, Z.-P.; Liang, J.-Y.; Hu, L.-H. Water-Soluble Constituents of Cudrania Tricuspidata (Carr.) Bur. J. Integr. Plant Biol. 2006, 48 (8), 996-1000. https://doi.org/10.1111/j.1744-7909.2006.00227.x.

(164) No, J. K.; Soung, D. Y.; Kim, Y. J.; Shim, K. H.; Jun, Y. S.; Rhee, S. H.; Yokozawa, T.; Chung, H. Y. Inhibition of Tyrosinase by Green Tea Components. Life Sci. 1999, 65 (21), PL241-PL246. https://doi.org/10.1016/S0024-3205(99)00492-0.

(165) Chang, T.-S. An Updated Review of Tyrosinase Inhibitors. Int. J. Mol. Sci. 2009, 10 (6), 2440-2475. https://doi.org/10.3390/ijms10062440.

(166) Kubo, I.; Kinst-Hori, I. Flavonols from Saffron Flower: Tyrosinase Inhibitory Activity and Inhibition Mechanism. J. Agric. Food Chem. 1999, 47 (10), 4121-4125.

(167) Chen, Q.-X.; Kubo, I. Kinetics of Mushroom Tyrosinase Inhibition by Quercetin. J. Agric. Food Chem. 2002, 50 (14), 4108-4112. https://doi.org/10.1021/jf011378z.

(168) Parvez, S.; Kang, M.; Chung, H.-S.; Bae, H.; Shoukat Parvez1, Moonkyu Kang2, H.-S. C. and H. B. Naturally Occurring Tyrosinase Inhibitors: Mechanism and Applications in Skin Health, Cosmetics and Agriculture Industries. Phytother. Res. 2007, 21 (9), 805-816. https://doi.org/10.1002/ptr.2184.

(169) Xie, L.-P.; Chen, Q.-X.; Huang, H.; Wang, H.-Z.; Zhang, R.-Q. Inhibitory Effects of Some Flavonoids on the Activity of Mushroom Tyrosinase. Biochemistry. (Mosc). 2003, 68 (4), 487-491.

(170) Kim, Y.-J.; Uyama, H. Tyrosinase Inhibitors from Natural and Synthetic Sources: Structure, Inhibition Mechanism and Perspective for the Future. Cell. Mol. Life Sci. 2005, 62 (15), 1707-1723. https://doi.org/10.1007/s00018-005-5054-y.

(171) Kim, Y. J. Rhamnetin Attenuates Melanogenesis by Suppressing Oxidative Stress and Pro-Inflammatory Mediators. Biol. Pharm. Bull. 2013, 36 (8), 1341-1347. https://doi.org/10.1248/bpb.b13-00276.

(172) Seo, S. Y.; Sharma, V. K.; Sharma, N. Mushroom Tyrosinase: Recent Prospects. J. Agric. Food Chem. 2003, 51 (10), 2837-2853. https://doi.org/10.1021/jf020826f.

(173) Wu, Y.; Wu, Z. R.; Chen, P.; Yang-Li; Deng, W. R.; Wang, Y. Q.; Li, H. Y. Effect of the Tyrosinase Inhibitor (S)-N-Trans-Feruloyloctopamine from Garlic Skin on Tyrosinase Gene Expression and Melanine Accumulation in Melanoma Cells. Bioorganic Med. Chem. Lett. 2015, 25 (7), 1476-1478. https://doi.org/10.1016/j.bmcl.2015.02.028.

(174) Yi Dai; Guang-xiong Zhou; Hiroshi Kurihara; Wen-cai Ye, and; Xin-sheng Yao. Biphenyl Glycosides from the Fruit of Pyracantha Fortuneana. 2006. https://doi.org/10.1021/NP0600853.

(175) Lee, S. Y.; Baek, N.; Nam, T. G. Natural, Semisynthetic and Synthetic Tyrosinase Inhibitors. J. Enzyme Inhib. Med. Chem. 2016, 31 (1), 1-13. https://doi.org/10.3109/14756366.2015.1004058.

(176) Ebanks, J. P.; Wickett, R. R.; Boissy, R. E. Mechanisms Regulating Skin Pigmentation: The Rise and Fall of Complexion Coloration. Int. J. Mol. Sci. 2009, 10 (9), 4066-4087. https://doi.org/10.3390/ijms10094066.

(177) Draelos, Z. D. Skin Lightening Preparations and the Hydroquinone Controversy. Dermatol. Ther. 2007, 20 (5), 308-313. https://doi.org/10.1111/j.1529-8019.2007.00144.x.

(178) Chang, T. S. An Updated Review of Tyrosinase Inhibitors. Int. J. Mol. Sci. 2009, 10 (6), 2440-2475. https://doi.org/10.3390/ijms10062440.

(179) Kim, S. J.; Son, K. H.; Chang, H. W.; Kang, S. S.; Kim, H. P. Tyrosinase Inhibitory Prenylated Flavonoids from Sophora Flavescens. Biol. Pharm. Bull. 2003, 26 (9), 1348-1350.

(180) Hyun, S. K.; Lee, W.-H.; Jeong, D. M.; Kim, Y.; Choi, J. S. Inhibitory Effects of Kurarinol, Kuraridinol, and Trifolirhizin from Sophora Flavescens on Tyrosinase and Melanin Synthesis. Biol. Pharm. Bull. 2008, 31 (1), 154-158.

(181) Shin, N. H.; Ryu, S. Y.; Choi, E. J.; Kang, S. H.; Chang, I. M.; Min, K. R.; Kim, Y. Oxyresveratrol as the Potent Inhibitor on Dopa Oxidase Activity of Mushroom Tyrosinase. Biochem. Biophys. Res. Commun. 1998, 243 (3), 801-803. https://doi.org/10.1006/bbrc.1998.8169.

(182) Leu, Y.-L.; Hwang, T.-L.; Hu, J.-W.; Fang, J.-Y. Anthraquinones FromPolygonum Cuspidatum as Tyrosinase Inhibitors for Dermal Use. Phyther. Res. 2008, 22 (4), 552-556. https://doi.org/10.1002/ptr.2324.

(183) Cruz-Vega, D.; Verde-Star, M. J.; Salinas-Gonzalez, N. R.; Rosales-Hernandez, B.; Estrada-Garcia, I.; Mendez-Aragon, P.; Carranza-Rosales, P.; Gonzalez-Garza, M.; Castro-Garza, J. Review of Pharmacological Effects of Glycyrrhiza Radix and Its Bioactive Compounds. Zhongguo Zhong Yao Za Zhi 2009, 22 (April 2008), 557-559. https://doi.org/10.1002/ptr.

(184) Kim, Y.-J. J.; Uyama, H. Tyrosinase Inhibitors from Natural and Synthetic Sources: Structure, Inhibition Mechanism and Perspective for the Future. Cell. Mol. Life Sci. 2005, 62 (15), 1707-1723. https://doi.org/10.1007/s00018-005-5054-y.

(185) Kubo, I.; Kinst-Hori, I. 2-Hydroxy-4-Methoxybenzaldehyde: A Potent Tyrosinase Inhibitor from African Medicinal Plants. Planta Med. 1999, 65 (1), 19-22.

(186) Ha, T. J.; Tamura, S.; Kubo, I. Effects of Mushroom Tyrosinase on Anisaldehyde. J. Agric. Food Chem. 2005, 53 (18), 7024-7028. https://doi.org/10.1021/jf047943q.

(187) Lee, H.-S. Tyrosinase Inhibitors of Pulsatilla Cernua Root-Derived Materials. J. Agric. Food Chem. 2002, 50 (6), 1400-1403.

(188) Isao Kubo, and I. K.-H. Tyrosinase Inhibitors from Cumin. 1998. https://doi.org/10.1021/JF980226+.

(189) Jiménez, M.; Chazarra, S.; Escribano, J.; Cabanes, J.; García-Carmona, F. Competitive Inhibition of Mushroom Tyrosinase by 4-Substituted Benzaldehydes. J. Agric. Food Chem. 2001, 49 (8), 4060-4063.

(190) D. Datta and S. Kumar. Modeling Using Response Surface Methodology and Optimization Using Differential Evolution of Reactive Extraction of Glycolic Acid,. Chem Eng Commun, 202, 59-69.

(191) Ma, D.; Tu, Z. C.; Wang, H.; Zhang, L.; He, N.; McClements, D. J. Mechanism and Kinetics of Tyrosinase Inhibition by Glycolic Acid: A Study Using Conventional Spectroscopy Methods and Hydrogen/Deuterium Exchange Coupling with Mass Spectrometry. Food Funct. 2017, 8 (1), 122-131. https://doi.org/10.1039/c6fo01384h.

 

UCAMSENECANLHPCIOANNINON